Loading…
Low temperature hydrogen transport using a palladium/copper membrane
Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and p...
Saved in:
Published in: | Journal of materials science 2003-06, Vol.38 (11), p.2401-2408 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2408 |
container_issue | 11 |
container_start_page | 2401 |
container_title | Journal of materials science |
container_volume | 38 |
creator | LESSING, P. A WOOD, H. C ZUCK, L. D |
description | Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and pressures when using ultra high purity hydrogen. A preconditioning step of high temperatures and inlet pressures of pure hydrogen was necessary to stimulate any substantial permeate flows. After pre-conditioning, results showed zero hydrogen flow when using 3–4% hydrogen mixed with helium or argon. It is thought that the inert gas atoms were adsorbed into the membrane surface and thus blocked the hydrogen atom dissolution. When using pure hydrogen at low to moderate temperatures and low pressures, no measurable permeate flow was observed. Also, zero permeate flow was observed at relatively high temperatures (e.g., 150°C) and a low inlet pressure (5 psig). The cause of the zero permeate flow, when using pure hydrogen, was attributed to interface control of the permeation process. Interface control could be due to: (a) insufficient energy to split the hydrogen molecule into hydrogen atoms, or (b) a reversible phase change from beta to alpha of crystals at the near surface. |
doi_str_mv | 10.1023/A:1023996800277 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_912026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27832032</sourcerecordid><originalsourceid>FETCH-LOGICAL-o268t-cf7ade4c226186eaa3dd6996274d95d97c297ea500348473cbc81c86644b31a93</originalsourceid><addsrcrecordid>eNpdj01LAzEQhoMoWKtnryuit7XJJJsPb1I_oeBFzyHNpu2W3c2aZJH-e1Pak6cXhmfeeQaha4IfCAY6e3rch1JcYgxCnKAJqQQtmcT0FE3yDEpgnJyjixi3GONKAJmg54X_LZLrBhdMGoMrNrs6-LXrixRMHwcfUjHGpl8XphhM25q6GbuZ9UNeKDrXLTPlLtHZyrTRXR1zir5fX77m7-Xi8-1j_rQoPXCZSrsSpnbMAnAiuTOG1jXPwiBYrapaCQtKOFNhTJlkgtqllcRKzhlbUmIUnaKbQ6-PqdHRNsnZjfV972zSigAGnpn7AzME_zO6mHTXROuyee_8GDUISQFTyODtP3Drx9Bnf50FcW6ryP7k3ZEy0Zp2ld-1TdRDaDoTdpowKRTlhP4BeQFyTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260120519</pqid></control><display><type>article</type><title>Low temperature hydrogen transport using a palladium/copper membrane</title><source>Springer Nature</source><creator>LESSING, P. A ; WOOD, H. C ; ZUCK, L. D</creator><creatorcontrib>LESSING, P. A ; WOOD, H. C ; ZUCK, L. D ; Idaho National Laboratory (INL)</creatorcontrib><description>Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and pressures when using ultra high purity hydrogen. A preconditioning step of high temperatures and inlet pressures of pure hydrogen was necessary to stimulate any substantial permeate flows. After pre-conditioning, results showed zero hydrogen flow when using 3–4% hydrogen mixed with helium or argon. It is thought that the inert gas atoms were adsorbed into the membrane surface and thus blocked the hydrogen atom dissolution. When using pure hydrogen at low to moderate temperatures and low pressures, no measurable permeate flow was observed. Also, zero permeate flow was observed at relatively high temperatures (e.g., 150°C) and a low inlet pressure (5 psig). The cause of the zero permeate flow, when using pure hydrogen, was attributed to interface control of the permeation process. Interface control could be due to: (a) insufficient energy to split the hydrogen molecule into hydrogen atoms, or (b) a reversible phase change from beta to alpha of crystals at the near surface.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1023996800277</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; ARGON ; ATOMS ; Copper ; DISSOLUTION ; Exact sciences and technology ; Flow stability ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; HELIUM ; HYDROGEN ; Hydrogen atoms ; Hydrogen permeation ; Inlet pressure ; Low temperature ; Materials science ; membrane ; MEMBRANES ; Metals. Metallurgy ; Palladium ; palladium/copper ; Penetration ; Phase transitions ; Preconditioning ; Rare gases ; STABILITY ; TRANSPORT</subject><ispartof>Journal of materials science, 2003-06, Vol.38 (11), p.2401-2408</ispartof><rights>2004 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14879361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/912026$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LESSING, P. A</creatorcontrib><creatorcontrib>WOOD, H. C</creatorcontrib><creatorcontrib>ZUCK, L. D</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Low temperature hydrogen transport using a palladium/copper membrane</title><title>Journal of materials science</title><description>Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and pressures when using ultra high purity hydrogen. A preconditioning step of high temperatures and inlet pressures of pure hydrogen was necessary to stimulate any substantial permeate flows. After pre-conditioning, results showed zero hydrogen flow when using 3–4% hydrogen mixed with helium or argon. It is thought that the inert gas atoms were adsorbed into the membrane surface and thus blocked the hydrogen atom dissolution. When using pure hydrogen at low to moderate temperatures and low pressures, no measurable permeate flow was observed. Also, zero permeate flow was observed at relatively high temperatures (e.g., 150°C) and a low inlet pressure (5 psig). The cause of the zero permeate flow, when using pure hydrogen, was attributed to interface control of the permeation process. Interface control could be due to: (a) insufficient energy to split the hydrogen molecule into hydrogen atoms, or (b) a reversible phase change from beta to alpha of crystals at the near surface.</description><subject>Applied sciences</subject><subject>ARGON</subject><subject>ATOMS</subject><subject>Copper</subject><subject>DISSOLUTION</subject><subject>Exact sciences and technology</subject><subject>Flow stability</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>HELIUM</subject><subject>HYDROGEN</subject><subject>Hydrogen atoms</subject><subject>Hydrogen permeation</subject><subject>Inlet pressure</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>membrane</subject><subject>MEMBRANES</subject><subject>Metals. Metallurgy</subject><subject>Palladium</subject><subject>palladium/copper</subject><subject>Penetration</subject><subject>Phase transitions</subject><subject>Preconditioning</subject><subject>Rare gases</subject><subject>STABILITY</subject><subject>TRANSPORT</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdj01LAzEQhoMoWKtnryuit7XJJJsPb1I_oeBFzyHNpu2W3c2aZJH-e1Pak6cXhmfeeQaha4IfCAY6e3rch1JcYgxCnKAJqQQtmcT0FE3yDEpgnJyjixi3GONKAJmg54X_LZLrBhdMGoMrNrs6-LXrixRMHwcfUjHGpl8XphhM25q6GbuZ9UNeKDrXLTPlLtHZyrTRXR1zir5fX77m7-Xi8-1j_rQoPXCZSrsSpnbMAnAiuTOG1jXPwiBYrapaCQtKOFNhTJlkgtqllcRKzhlbUmIUnaKbQ6-PqdHRNsnZjfV972zSigAGnpn7AzME_zO6mHTXROuyee_8GDUISQFTyODtP3Drx9Bnf50FcW6ryP7k3ZEy0Zp2ld-1TdRDaDoTdpowKRTlhP4BeQFyTQ</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>LESSING, P. A</creator><creator>WOOD, H. C</creator><creator>ZUCK, L. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20030601</creationdate><title>Low temperature hydrogen transport using a palladium/copper membrane</title><author>LESSING, P. A ; WOOD, H. C ; ZUCK, L. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o268t-cf7ade4c226186eaa3dd6996274d95d97c297ea500348473cbc81c86644b31a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>ARGON</topic><topic>ATOMS</topic><topic>Copper</topic><topic>DISSOLUTION</topic><topic>Exact sciences and technology</topic><topic>Flow stability</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>HELIUM</topic><topic>HYDROGEN</topic><topic>Hydrogen atoms</topic><topic>Hydrogen permeation</topic><topic>Inlet pressure</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>membrane</topic><topic>MEMBRANES</topic><topic>Metals. Metallurgy</topic><topic>Palladium</topic><topic>palladium/copper</topic><topic>Penetration</topic><topic>Phase transitions</topic><topic>Preconditioning</topic><topic>Rare gases</topic><topic>STABILITY</topic><topic>TRANSPORT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LESSING, P. A</creatorcontrib><creatorcontrib>WOOD, H. C</creatorcontrib><creatorcontrib>ZUCK, L. D</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LESSING, P. A</au><au>WOOD, H. C</au><au>ZUCK, L. D</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature hydrogen transport using a palladium/copper membrane</atitle><jtitle>Journal of materials science</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>38</volume><issue>11</issue><spage>2401</spage><epage>2408</epage><pages>2401-2408</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and pressures when using ultra high purity hydrogen. A preconditioning step of high temperatures and inlet pressures of pure hydrogen was necessary to stimulate any substantial permeate flows. After pre-conditioning, results showed zero hydrogen flow when using 3–4% hydrogen mixed with helium or argon. It is thought that the inert gas atoms were adsorbed into the membrane surface and thus blocked the hydrogen atom dissolution. When using pure hydrogen at low to moderate temperatures and low pressures, no measurable permeate flow was observed. Also, zero permeate flow was observed at relatively high temperatures (e.g., 150°C) and a low inlet pressure (5 psig). The cause of the zero permeate flow, when using pure hydrogen, was attributed to interface control of the permeation process. Interface control could be due to: (a) insufficient energy to split the hydrogen molecule into hydrogen atoms, or (b) a reversible phase change from beta to alpha of crystals at the near surface.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1023996800277</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2003-06, Vol.38 (11), p.2401-2408 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_osti_scitechconnect_912026 |
source | Springer Nature |
subjects | Applied sciences ARGON ATOMS Copper DISSOLUTION Exact sciences and technology Flow stability GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE HELIUM HYDROGEN Hydrogen atoms Hydrogen permeation Inlet pressure Low temperature Materials science membrane MEMBRANES Metals. Metallurgy Palladium palladium/copper Penetration Phase transitions Preconditioning Rare gases STABILITY TRANSPORT |
title | Low temperature hydrogen transport using a palladium/copper membrane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20hydrogen%20transport%20using%20a%20palladium/copper%20membrane&rft.jtitle=Journal%20of%20materials%20science&rft.au=LESSING,%20P.%20A&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2003-06-01&rft.volume=38&rft.issue=11&rft.spage=2401&rft.epage=2408&rft.pages=2401-2408&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1023996800277&rft_dat=%3Cproquest_osti_%3E27832032%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o268t-cf7ade4c226186eaa3dd6996274d95d97c297ea500348473cbc81c86644b31a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260120519&rft_id=info:pmid/&rfr_iscdi=true |