Loading…

Investigation of the thermodynamics governing metal hydride synthesis in the molten state process

This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2008-10, Vol.465 (1), p.41-46
Main Authors: Stowe, Ashley C., Berseth, Polly A., Farrell, Thomas P., Laughlin, Laura, Anton, Donald, Zidan, Ragaiy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73
cites cdi_FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73
container_end_page 46
container_issue 1
container_start_page 41
container_title Journal of alloys and compounds
container_volume 465
creator Stowe, Ashley C.
Berseth, Polly A.
Farrell, Thomas P.
Laughlin, Laura
Anton, Donald
Zidan, Ragaiy
description This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevated hydrogen overpressures and temperatures the starting materials can reach melting or near-melting point without decomposing (molten state processing), allowing for enhanced diffusion and exchange of elements among the starting materials. The formation and stabilization of these compounds, using the molten state process, is driven by the thermodynamic and kinetic properties of the starting and resulting compounds. Complex hydrides (e.g. NaK 2AlH 6, Mg(AlH 4) 2) were formed, structurally characterized and their hydrogen desorption properties were tested. In this paper we report on investigations of the thermodynamic aspects governing the process and products. We also report on the role of molar ratio in determining the final products. The effectiveness of the molten state process is compared with chemomechanical synthetic methods (ball milling).
doi_str_mv 10.1016/j.jallcom.2007.10.103
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_913135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838807020257</els_id><sourcerecordid>34997816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpoNttfkJAPbQ3byXLsqxTKSFtA4FemrNQpPGuFltKNcrC_vvK8dJrD2Jg-J7mvUfIDWc7znj_5bg72mlyad61jKnd61q8IRs-KNF0fa_fkg3TrWwGMQzvyHvEI2OMa8E3xN7HE2AJe1tCijSNtBxgeXlO_hztHBzSfTpBjiHu6QzFTvRw9jl4oHiOlcSANMRX3ZymApFisQXoc04OED-Qq9FOCNeXuSWP3-9-3_5sHn79uL_99tC4rhOl0d0o9Ah9K6HTouX2CUTP1Oi8HthgpVQMOgWq9W0Lzgo1CiefpBOSee5BiS35uP6bahyDLhRwB5diBFeM5oILWZnPK1O9_Xmpuc0c0ME02QjpBY3otFYD7ysoV9DlhJhhNM85zDafDWdmKd0czaV0s5S-rkXVfbocsOjsNGYbXcB_4pb1WvU135Z8XTmojZwC5MUwRAc-5MWvT-E_l_4CZyicNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34997816</pqid></control><display><type>article</type><title>Investigation of the thermodynamics governing metal hydride synthesis in the molten state process</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Stowe, Ashley C. ; Berseth, Polly A. ; Farrell, Thomas P. ; Laughlin, Laura ; Anton, Donald ; Zidan, Ragaiy</creator><creatorcontrib>Stowe, Ashley C. ; Berseth, Polly A. ; Farrell, Thomas P. ; Laughlin, Laura ; Anton, Donald ; Zidan, Ragaiy ; SRS</creatorcontrib><description>This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevated hydrogen overpressures and temperatures the starting materials can reach melting or near-melting point without decomposing (molten state processing), allowing for enhanced diffusion and exchange of elements among the starting materials. The formation and stabilization of these compounds, using the molten state process, is driven by the thermodynamic and kinetic properties of the starting and resulting compounds. Complex hydrides (e.g. NaK 2AlH 6, Mg(AlH 4) 2) were formed, structurally characterized and their hydrogen desorption properties were tested. In this paper we report on investigations of the thermodynamic aspects governing the process and products. We also report on the role of molar ratio in determining the final products. The effectiveness of the molten state process is compared with chemomechanical synthetic methods (ball milling).</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2007.10.103</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>08 HYDROGEN ; Cross-disciplinary physics: materials science; rheology ; DESORPTION ; Exact sciences and technology ; HYDRIDES ; HYDROGEN ; Hydrogen absorbing materials ; HYDROGEN STORAGE ; KINETICS ; Materials science ; Materials synthesis; materials processing ; Mechanicochemical processing ; Metal hydrides ; MILLING ; Physics ; PROCESSING ; SYNTHESIS ; Thermodynamic properties ; THERMODYNAMICS</subject><ispartof>Journal of alloys and compounds, 2008-10, Vol.465 (1), p.41-46</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73</citedby><cites>FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20697649$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/913135$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stowe, Ashley C.</creatorcontrib><creatorcontrib>Berseth, Polly A.</creatorcontrib><creatorcontrib>Farrell, Thomas P.</creatorcontrib><creatorcontrib>Laughlin, Laura</creatorcontrib><creatorcontrib>Anton, Donald</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><creatorcontrib>SRS</creatorcontrib><title>Investigation of the thermodynamics governing metal hydride synthesis in the molten state process</title><title>Journal of alloys and compounds</title><description>This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevated hydrogen overpressures and temperatures the starting materials can reach melting or near-melting point without decomposing (molten state processing), allowing for enhanced diffusion and exchange of elements among the starting materials. The formation and stabilization of these compounds, using the molten state process, is driven by the thermodynamic and kinetic properties of the starting and resulting compounds. Complex hydrides (e.g. NaK 2AlH 6, Mg(AlH 4) 2) were formed, structurally characterized and their hydrogen desorption properties were tested. In this paper we report on investigations of the thermodynamic aspects governing the process and products. We also report on the role of molar ratio in determining the final products. The effectiveness of the molten state process is compared with chemomechanical synthetic methods (ball milling).</description><subject>08 HYDROGEN</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DESORPTION</subject><subject>Exact sciences and technology</subject><subject>HYDRIDES</subject><subject>HYDROGEN</subject><subject>Hydrogen absorbing materials</subject><subject>HYDROGEN STORAGE</subject><subject>KINETICS</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mechanicochemical processing</subject><subject>Metal hydrides</subject><subject>MILLING</subject><subject>Physics</subject><subject>PROCESSING</subject><subject>SYNTHESIS</subject><subject>Thermodynamic properties</subject><subject>THERMODYNAMICS</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpoNttfkJAPbQ3byXLsqxTKSFtA4FemrNQpPGuFltKNcrC_vvK8dJrD2Jg-J7mvUfIDWc7znj_5bg72mlyad61jKnd61q8IRs-KNF0fa_fkg3TrWwGMQzvyHvEI2OMa8E3xN7HE2AJe1tCijSNtBxgeXlO_hztHBzSfTpBjiHu6QzFTvRw9jl4oHiOlcSANMRX3ZymApFisQXoc04OED-Qq9FOCNeXuSWP3-9-3_5sHn79uL_99tC4rhOl0d0o9Ah9K6HTouX2CUTP1Oi8HthgpVQMOgWq9W0Lzgo1CiefpBOSee5BiS35uP6bahyDLhRwB5diBFeM5oILWZnPK1O9_Xmpuc0c0ME02QjpBY3otFYD7ysoV9DlhJhhNM85zDafDWdmKd0czaV0s5S-rkXVfbocsOjsNGYbXcB_4pb1WvU135Z8XTmojZwC5MUwRAc-5MWvT-E_l_4CZyicNA</recordid><startdate>20081006</startdate><enddate>20081006</enddate><creator>Stowe, Ashley C.</creator><creator>Berseth, Polly A.</creator><creator>Farrell, Thomas P.</creator><creator>Laughlin, Laura</creator><creator>Anton, Donald</creator><creator>Zidan, Ragaiy</creator><general>Elsevier B.V</general><general>Elsevier</general><general>pubinfo</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20081006</creationdate><title>Investigation of the thermodynamics governing metal hydride synthesis in the molten state process</title><author>Stowe, Ashley C. ; Berseth, Polly A. ; Farrell, Thomas P. ; Laughlin, Laura ; Anton, Donald ; Zidan, Ragaiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>08 HYDROGEN</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DESORPTION</topic><topic>Exact sciences and technology</topic><topic>HYDRIDES</topic><topic>HYDROGEN</topic><topic>Hydrogen absorbing materials</topic><topic>HYDROGEN STORAGE</topic><topic>KINETICS</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mechanicochemical processing</topic><topic>Metal hydrides</topic><topic>MILLING</topic><topic>Physics</topic><topic>PROCESSING</topic><topic>SYNTHESIS</topic><topic>Thermodynamic properties</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stowe, Ashley C.</creatorcontrib><creatorcontrib>Berseth, Polly A.</creatorcontrib><creatorcontrib>Farrell, Thomas P.</creatorcontrib><creatorcontrib>Laughlin, Laura</creatorcontrib><creatorcontrib>Anton, Donald</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><creatorcontrib>SRS</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stowe, Ashley C.</au><au>Berseth, Polly A.</au><au>Farrell, Thomas P.</au><au>Laughlin, Laura</au><au>Anton, Donald</au><au>Zidan, Ragaiy</au><aucorp>SRS</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the thermodynamics governing metal hydride synthesis in the molten state process</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2008-10-06</date><risdate>2008</risdate><volume>465</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevated hydrogen overpressures and temperatures the starting materials can reach melting or near-melting point without decomposing (molten state processing), allowing for enhanced diffusion and exchange of elements among the starting materials. The formation and stabilization of these compounds, using the molten state process, is driven by the thermodynamic and kinetic properties of the starting and resulting compounds. Complex hydrides (e.g. NaK 2AlH 6, Mg(AlH 4) 2) were formed, structurally characterized and their hydrogen desorption properties were tested. In this paper we report on investigations of the thermodynamic aspects governing the process and products. We also report on the role of molar ratio in determining the final products. The effectiveness of the molten state process is compared with chemomechanical synthetic methods (ball milling).</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2007.10.103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2008-10, Vol.465 (1), p.41-46
issn 0925-8388
1873-4669
language eng
recordid cdi_osti_scitechconnect_913135
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects 08 HYDROGEN
Cross-disciplinary physics: materials science
rheology
DESORPTION
Exact sciences and technology
HYDRIDES
HYDROGEN
Hydrogen absorbing materials
HYDROGEN STORAGE
KINETICS
Materials science
Materials synthesis
materials processing
Mechanicochemical processing
Metal hydrides
MILLING
Physics
PROCESSING
SYNTHESIS
Thermodynamic properties
THERMODYNAMICS
title Investigation of the thermodynamics governing metal hydride synthesis in the molten state process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20thermodynamics%20governing%20metal%20hydride%20synthesis%20in%20the%20molten%20state%20process&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Stowe,%20Ashley%20C.&rft.aucorp=SRS&rft.date=2008-10-06&rft.volume=465&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2007.10.103&rft_dat=%3Cproquest_osti_%3E34997816%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-94f39fe625e49321abe3607fcd9808a5570e47e72d22eca37f3c5b5c350d1de73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34997816&rft_id=info:pmid/&rfr_iscdi=true