Loading…
Methods for mapping of interaction networks involving membrane proteins
Nearly one-third of all genes in various organisms encode membrane-associated proteins that participate in numerous protein-protein interactions important to the processes of life. However, membrane protein interactions pose significant challenges due to the need to solubilize membranes without disr...
Saved in:
Published in: | Biochemical and biophysical research communications 2007-11, Vol.363 (3), p.457-461 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nearly one-third of all genes in various organisms encode membrane-associated proteins that participate in numerous protein-protein interactions important to the processes of life. However, membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein–protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is limited with respect to the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2007.09.031 |