Loading…

In Vitro Evolution of a Peptide with a Hematite Binding Motif That May Constitute a Natural Metal-Oxide Binding Archetype

Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-S...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2008-05, Vol.42 (10), p.3821-3827
Main Authors: Lower, Brian H, Lins, Roberto D, Oestreicher, Zachery, Straatsma, Tjerk P, Hochella, Michael F, Shi, Liang, Lower, Steven K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. To better understand the nature of the peptide−metal oxide binding demonstrated by these experiments, molecular dynamics simulations were carried out for Ser-Pro-Ser at a hematite surface. These simulations show that hydrogen bonding occurs between the two serine amino acids and the hydroxylated hematite surface and that the presence of proline between the hydroxide residues restricts the peptide flexibility, thereby inducing a structural-binding motif. A search of published sequence data revealed that the binding motif (Ser/Thr-Pro-Ser/Thr) is adjacent to the terminal heme-binding domain of both OmcA and MtrC, which are outer membrane cytochromes from the metal-reducing bacterium Shewanella oneidensis MR-1. The entire five amino acid consensus sequence (Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr) was also found as multiple copies in the primary sequences of metal-oxide binding proteins Sil1 and Sil2 from Thalassiosira pseudonana. We suggest that this motif constitutes a natural metal-oxide binding archetype that could be exploited in enzyme-based biofuel cell design and approaches to synthesize tailored metal-oxide nanostructures.
ISSN:0013-936X
1520-5851
DOI:10.1021/es702688c