Loading…

The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase

Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2007-05, Vol.368 (5), p.1215-1222
Main Authors: Abbott, D. Wade, Boraston, Alisdair B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3
cites cdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3
container_end_page 1222
container_issue 5
container_start_page 1215
container_title Journal of molecular biology
container_volume 368
creator Abbott, D. Wade
Boraston, Alisdair B.
description Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.
doi_str_mv 10.1016/j.jmb.2007.02.083
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_929882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283607002902</els_id><sourcerecordid>70442897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0EIkfgB9Ag09Dt4q-zvaIKUT6QIlEQCirL5x0Tn3bXh-2N2H-PV3cSXVJNMc-8o5kHofeUtJRQ-Xnf7sddywhRLWEt0fwF2lCiu0ZLrl-iDSGMNUxzeYbe5LwnhGy50K_RGVW8U1qKDfp1_wD4R0mzK3OyA_5qc8jYx4Sv_sZDHJbfdrBrL042A75wJTyGsuAwYYuv7RiGBTONb4bFxRx6wLdLn-JQ2bfolbdDhneneo5-Xl_dX942d99vvl1e3DVOKFEab5WV0nrNqdQOuKeCS8c82-08B80F67bK95zpjjLb6W2viBNbYJZ3rJOen6OPx9yYSzDZhQLuwcVpAldMRbRmlfl0ZA4p_pkhFzOG7GAY7ARxzkYRIeoC9SzI6kc1J6SC9Ai6FHNO4M0hhdGmxVBiVjlmb6ocs8oxhJkqp858OIXPuxH6_xMnGxX4cgSg_usxQFrPgclBH9J6TR_DE_H_ACAVnpE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20228300</pqid></control><display><type>article</type><title>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</title><source>ScienceDirect Journals</source><creator>Abbott, D. Wade ; Boraston, Alisdair B.</creator><creatorcontrib>Abbott, D. Wade ; Boraston, Alisdair B. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2007.02.083</identifier><identifier>PMID: 17397864</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>09 BIOMASS FUELS ; Amino Acid Sequence ; AMINO ACIDS ; Binding Sites ; BIOLOGICAL FUNCTIONS ; BIOMASS ; Crystallography, X-Ray ; DIGESTION ; Dimerization ; ENZYMES ; exopolygalacturonase ; FRUITS ; glycoside hydrolase ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; GLYCOSIDES ; HYDROLASES ; Models, Molecular ; Molecular Sequence Data ; national synchrotron light source ; OLIGOSACCHARIDES ; PATHOGENESIS ; pectin degradation ; PECTINS ; PLANTS ; POLYMERIZATION ; Protein Structure, Tertiary ; RECYCLING ; RESIDUES ; RESOLUTION ; RIPENING ; Sequence Alignment ; Structure-Activity Relationship ; SUBSTRATES ; X-ray crystallography ; Yersinia enterocolitica ; Yersinia enterocolitica - enzymology</subject><ispartof>Journal of molecular biology, 2007-05, Vol.368 (5), p.1215-1222</ispartof><rights>2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</citedby><cites>FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17397864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/929882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbott, D. Wade</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.</description><subject>09 BIOMASS FUELS</subject><subject>Amino Acid Sequence</subject><subject>AMINO ACIDS</subject><subject>Binding Sites</subject><subject>BIOLOGICAL FUNCTIONS</subject><subject>BIOMASS</subject><subject>Crystallography, X-Ray</subject><subject>DIGESTION</subject><subject>Dimerization</subject><subject>ENZYMES</subject><subject>exopolygalacturonase</subject><subject>FRUITS</subject><subject>glycoside hydrolase</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>GLYCOSIDES</subject><subject>HYDROLASES</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>national synchrotron light source</subject><subject>OLIGOSACCHARIDES</subject><subject>PATHOGENESIS</subject><subject>pectin degradation</subject><subject>PECTINS</subject><subject>PLANTS</subject><subject>POLYMERIZATION</subject><subject>Protein Structure, Tertiary</subject><subject>RECYCLING</subject><subject>RESIDUES</subject><subject>RESOLUTION</subject><subject>RIPENING</subject><subject>Sequence Alignment</subject><subject>Structure-Activity Relationship</subject><subject>SUBSTRATES</subject><subject>X-ray crystallography</subject><subject>Yersinia enterocolitica</subject><subject>Yersinia enterocolitica - enzymology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhi0EIkfgB9Ag09Dt4q-zvaIKUT6QIlEQCirL5x0Tn3bXh-2N2H-PV3cSXVJNMc-8o5kHofeUtJRQ-Xnf7sddywhRLWEt0fwF2lCiu0ZLrl-iDSGMNUxzeYbe5LwnhGy50K_RGVW8U1qKDfp1_wD4R0mzK3OyA_5qc8jYx4Sv_sZDHJbfdrBrL042A75wJTyGsuAwYYuv7RiGBTONb4bFxRx6wLdLn-JQ2bfolbdDhneneo5-Xl_dX942d99vvl1e3DVOKFEab5WV0nrNqdQOuKeCS8c82-08B80F67bK95zpjjLb6W2viBNbYJZ3rJOen6OPx9yYSzDZhQLuwcVpAldMRbRmlfl0ZA4p_pkhFzOG7GAY7ARxzkYRIeoC9SzI6kc1J6SC9Ai6FHNO4M0hhdGmxVBiVjlmb6ocs8oxhJkqp858OIXPuxH6_xMnGxX4cgSg_usxQFrPgclBH9J6TR_DE_H_ACAVnpE</recordid><startdate>20070518</startdate><enddate>20070518</enddate><creator>Abbott, D. Wade</creator><creator>Boraston, Alisdair B.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>M7N</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20070518</creationdate><title>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</title><author>Abbott, D. Wade ; Boraston, Alisdair B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>09 BIOMASS FUELS</topic><topic>Amino Acid Sequence</topic><topic>AMINO ACIDS</topic><topic>Binding Sites</topic><topic>BIOLOGICAL FUNCTIONS</topic><topic>BIOMASS</topic><topic>Crystallography, X-Ray</topic><topic>DIGESTION</topic><topic>Dimerization</topic><topic>ENZYMES</topic><topic>exopolygalacturonase</topic><topic>FRUITS</topic><topic>glycoside hydrolase</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>GLYCOSIDES</topic><topic>HYDROLASES</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>national synchrotron light source</topic><topic>OLIGOSACCHARIDES</topic><topic>PATHOGENESIS</topic><topic>pectin degradation</topic><topic>PECTINS</topic><topic>PLANTS</topic><topic>POLYMERIZATION</topic><topic>Protein Structure, Tertiary</topic><topic>RECYCLING</topic><topic>RESIDUES</topic><topic>RESOLUTION</topic><topic>RIPENING</topic><topic>Sequence Alignment</topic><topic>Structure-Activity Relationship</topic><topic>SUBSTRATES</topic><topic>X-ray crystallography</topic><topic>Yersinia enterocolitica</topic><topic>Yersinia enterocolitica - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbott, D. Wade</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbott, D. Wade</au><au>Boraston, Alisdair B.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2007-05-18</date><risdate>2007</risdate><volume>368</volume><issue>5</issue><spage>1215</spage><epage>1222</epage><pages>1215-1222</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17397864</pmid><doi>10.1016/j.jmb.2007.02.083</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2007-05, Vol.368 (5), p.1215-1222
issn 0022-2836
1089-8638
language eng
recordid cdi_osti_scitechconnect_929882
source ScienceDirect Journals
subjects 09 BIOMASS FUELS
Amino Acid Sequence
AMINO ACIDS
Binding Sites
BIOLOGICAL FUNCTIONS
BIOMASS
Crystallography, X-Ray
DIGESTION
Dimerization
ENZYMES
exopolygalacturonase
FRUITS
glycoside hydrolase
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
GLYCOSIDES
HYDROLASES
Models, Molecular
Molecular Sequence Data
national synchrotron light source
OLIGOSACCHARIDES
PATHOGENESIS
pectin degradation
PECTINS
PLANTS
POLYMERIZATION
Protein Structure, Tertiary
RECYCLING
RESIDUES
RESOLUTION
RIPENING
Sequence Alignment
Structure-Activity Relationship
SUBSTRATES
X-ray crystallography
Yersinia enterocolitica
Yersinia enterocolitica - enzymology
title The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20Basis%20for%20Exopolygalacturonase%20Activity%20in%20a%20Family%2028%20Glycoside%20Hydrolase&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Abbott,%20D.%20Wade&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2007-05-18&rft.volume=368&rft.issue=5&rft.spage=1215&rft.epage=1222&rft.pages=1215-1222&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2007.02.083&rft_dat=%3Cproquest_osti_%3E70442897%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20228300&rft_id=info:pmid/17397864&rfr_iscdi=true