Loading…
The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase
Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been...
Saved in:
Published in: | Journal of molecular biology 2007-05, Vol.368 (5), p.1215-1222 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3 |
container_end_page | 1222 |
container_issue | 5 |
container_start_page | 1215 |
container_title | Journal of molecular biology |
container_volume | 368 |
creator | Abbott, D. Wade Boraston, Alisdair B. |
description | Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from
Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes. |
doi_str_mv | 10.1016/j.jmb.2007.02.083 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_929882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283607002902</els_id><sourcerecordid>70442897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0EIkfgB9Ag09Dt4q-zvaIKUT6QIlEQCirL5x0Tn3bXh-2N2H-PV3cSXVJNMc-8o5kHofeUtJRQ-Xnf7sddywhRLWEt0fwF2lCiu0ZLrl-iDSGMNUxzeYbe5LwnhGy50K_RGVW8U1qKDfp1_wD4R0mzK3OyA_5qc8jYx4Sv_sZDHJbfdrBrL042A75wJTyGsuAwYYuv7RiGBTONb4bFxRx6wLdLn-JQ2bfolbdDhneneo5-Xl_dX942d99vvl1e3DVOKFEab5WV0nrNqdQOuKeCS8c82-08B80F67bK95zpjjLb6W2viBNbYJZ3rJOen6OPx9yYSzDZhQLuwcVpAldMRbRmlfl0ZA4p_pkhFzOG7GAY7ARxzkYRIeoC9SzI6kc1J6SC9Ai6FHNO4M0hhdGmxVBiVjlmb6ocs8oxhJkqp858OIXPuxH6_xMnGxX4cgSg_usxQFrPgclBH9J6TR_DE_H_ACAVnpE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20228300</pqid></control><display><type>article</type><title>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</title><source>ScienceDirect Journals</source><creator>Abbott, D. Wade ; Boraston, Alisdair B.</creator><creatorcontrib>Abbott, D. Wade ; Boraston, Alisdair B. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from
Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2007.02.083</identifier><identifier>PMID: 17397864</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>09 BIOMASS FUELS ; Amino Acid Sequence ; AMINO ACIDS ; Binding Sites ; BIOLOGICAL FUNCTIONS ; BIOMASS ; Crystallography, X-Ray ; DIGESTION ; Dimerization ; ENZYMES ; exopolygalacturonase ; FRUITS ; glycoside hydrolase ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; GLYCOSIDES ; HYDROLASES ; Models, Molecular ; Molecular Sequence Data ; national synchrotron light source ; OLIGOSACCHARIDES ; PATHOGENESIS ; pectin degradation ; PECTINS ; PLANTS ; POLYMERIZATION ; Protein Structure, Tertiary ; RECYCLING ; RESIDUES ; RESOLUTION ; RIPENING ; Sequence Alignment ; Structure-Activity Relationship ; SUBSTRATES ; X-ray crystallography ; Yersinia enterocolitica ; Yersinia enterocolitica - enzymology</subject><ispartof>Journal of molecular biology, 2007-05, Vol.368 (5), p.1215-1222</ispartof><rights>2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</citedby><cites>FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17397864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/929882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbott, D. Wade</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from
Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.</description><subject>09 BIOMASS FUELS</subject><subject>Amino Acid Sequence</subject><subject>AMINO ACIDS</subject><subject>Binding Sites</subject><subject>BIOLOGICAL FUNCTIONS</subject><subject>BIOMASS</subject><subject>Crystallography, X-Ray</subject><subject>DIGESTION</subject><subject>Dimerization</subject><subject>ENZYMES</subject><subject>exopolygalacturonase</subject><subject>FRUITS</subject><subject>glycoside hydrolase</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>GLYCOSIDES</subject><subject>HYDROLASES</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>national synchrotron light source</subject><subject>OLIGOSACCHARIDES</subject><subject>PATHOGENESIS</subject><subject>pectin degradation</subject><subject>PECTINS</subject><subject>PLANTS</subject><subject>POLYMERIZATION</subject><subject>Protein Structure, Tertiary</subject><subject>RECYCLING</subject><subject>RESIDUES</subject><subject>RESOLUTION</subject><subject>RIPENING</subject><subject>Sequence Alignment</subject><subject>Structure-Activity Relationship</subject><subject>SUBSTRATES</subject><subject>X-ray crystallography</subject><subject>Yersinia enterocolitica</subject><subject>Yersinia enterocolitica - enzymology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhi0EIkfgB9Ag09Dt4q-zvaIKUT6QIlEQCirL5x0Tn3bXh-2N2H-PV3cSXVJNMc-8o5kHofeUtJRQ-Xnf7sddywhRLWEt0fwF2lCiu0ZLrl-iDSGMNUxzeYbe5LwnhGy50K_RGVW8U1qKDfp1_wD4R0mzK3OyA_5qc8jYx4Sv_sZDHJbfdrBrL042A75wJTyGsuAwYYuv7RiGBTONb4bFxRx6wLdLn-JQ2bfolbdDhneneo5-Xl_dX942d99vvl1e3DVOKFEab5WV0nrNqdQOuKeCS8c82-08B80F67bK95zpjjLb6W2viBNbYJZ3rJOen6OPx9yYSzDZhQLuwcVpAldMRbRmlfl0ZA4p_pkhFzOG7GAY7ARxzkYRIeoC9SzI6kc1J6SC9Ai6FHNO4M0hhdGmxVBiVjlmb6ocs8oxhJkqp858OIXPuxH6_xMnGxX4cgSg_usxQFrPgclBH9J6TR_DE_H_ACAVnpE</recordid><startdate>20070518</startdate><enddate>20070518</enddate><creator>Abbott, D. Wade</creator><creator>Boraston, Alisdair B.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>M7N</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20070518</creationdate><title>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</title><author>Abbott, D. Wade ; Boraston, Alisdair B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>09 BIOMASS FUELS</topic><topic>Amino Acid Sequence</topic><topic>AMINO ACIDS</topic><topic>Binding Sites</topic><topic>BIOLOGICAL FUNCTIONS</topic><topic>BIOMASS</topic><topic>Crystallography, X-Ray</topic><topic>DIGESTION</topic><topic>Dimerization</topic><topic>ENZYMES</topic><topic>exopolygalacturonase</topic><topic>FRUITS</topic><topic>glycoside hydrolase</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>GLYCOSIDES</topic><topic>HYDROLASES</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>national synchrotron light source</topic><topic>OLIGOSACCHARIDES</topic><topic>PATHOGENESIS</topic><topic>pectin degradation</topic><topic>PECTINS</topic><topic>PLANTS</topic><topic>POLYMERIZATION</topic><topic>Protein Structure, Tertiary</topic><topic>RECYCLING</topic><topic>RESIDUES</topic><topic>RESOLUTION</topic><topic>RIPENING</topic><topic>Sequence Alignment</topic><topic>Structure-Activity Relationship</topic><topic>SUBSTRATES</topic><topic>X-ray crystallography</topic><topic>Yersinia enterocolitica</topic><topic>Yersinia enterocolitica - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbott, D. Wade</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbott, D. Wade</au><au>Boraston, Alisdair B.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2007-05-18</date><risdate>2007</risdate><volume>368</volume><issue>5</issue><spage>1215</spage><epage>1222</epage><pages>1215-1222</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from
Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 Å resolution) and a digalacturonic acid product complex (solved to 2.10 Å resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17397864</pmid><doi>10.1016/j.jmb.2007.02.083</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2007-05, Vol.368 (5), p.1215-1222 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_osti_scitechconnect_929882 |
source | ScienceDirect Journals |
subjects | 09 BIOMASS FUELS Amino Acid Sequence AMINO ACIDS Binding Sites BIOLOGICAL FUNCTIONS BIOMASS Crystallography, X-Ray DIGESTION Dimerization ENZYMES exopolygalacturonase FRUITS glycoside hydrolase Glycoside Hydrolases - chemistry Glycoside Hydrolases - genetics Glycoside Hydrolases - metabolism GLYCOSIDES HYDROLASES Models, Molecular Molecular Sequence Data national synchrotron light source OLIGOSACCHARIDES PATHOGENESIS pectin degradation PECTINS PLANTS POLYMERIZATION Protein Structure, Tertiary RECYCLING RESIDUES RESOLUTION RIPENING Sequence Alignment Structure-Activity Relationship SUBSTRATES X-ray crystallography Yersinia enterocolitica Yersinia enterocolitica - enzymology |
title | The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20Basis%20for%20Exopolygalacturonase%20Activity%20in%20a%20Family%2028%20Glycoside%20Hydrolase&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Abbott,%20D.%20Wade&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2007-05-18&rft.volume=368&rft.issue=5&rft.spage=1215&rft.epage=1222&rft.pages=1215-1222&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2007.02.083&rft_dat=%3Cproquest_osti_%3E70442897%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-fa7a66af83168ce3f1436c2f2bbf3e8342957fd328912a985d70c45e2a39296f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20228300&rft_id=info:pmid/17397864&rfr_iscdi=true |