Loading…
Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds
We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a...
Saved in:
Published in: | Langmuir 2009-01, Vol.25 (1), p.262-268 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3 |
container_end_page | 268 |
container_issue | 1 |
container_start_page | 262 |
container_title | Langmuir |
container_volume | 25 |
creator | Barringer, Joshua E Messman, Jamie M Banaszek, Abigail L Meyer, Harry M Kilbey, S. Michael |
description | We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design. |
doi_str_mv | 10.1021/la802925g |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_948853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66787376</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgitbqwheQcaHoYjSXuSRLLV4KgoLuXITTTNJGMolOMkL79I606MbV4Rw-_gM_QkcEXxJMyZUDjqmg5XwLjUhJcV5yWm-jEa4LltdFxfbQfozvGGPBCrGL9oggpOQVH6G3aduGmXV2BckGnwWT3djQBqdV73TMhtNzcMvzL-uXrrGtToulg5UDlYLXF_kk-ATWWz_PXvrOgNLZiwJjgmviAdox4KI-3Mwxer27fZ085I9P99PJ9WMOrBIpVwyYMbRgrMCiVkZjGEbDqWZEUCBGENFQqjnDGFRjGk6KmaHCECGGjY3RyTo2xGRlVDZptVDBe62SFAXnJRvM2dp8dOGz1zHJ1kalnQOvQx9lVdW8ZnU1wIs1VF2IsdNGfnS2hW4pCZY_Zcvfsgd7vAntZ61u_uSm3QGcbgBEBc504JWNv44SzKqipn8OVJTvoe_8UNc_D78B-eOUCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66787376</pqid></control><display><type>article</type><title>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Barringer, Joshua E ; Messman, Jamie M ; Banaszek, Abigail L ; Meyer, Harry M ; Kilbey, S. Michael</creator><creatorcontrib>Barringer, Joshua E ; Messman, Jamie M ; Banaszek, Abigail L ; Meyer, Harry M ; Kilbey, S. Michael ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la802925g</identifier><identifier>PMID: 19115868</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Lactones - chemistry ; Polyvinyls - chemistry ; Proteins - chemistry ; Surface physical chemistry ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2009-01, Vol.25 (1), p.262-268</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</citedby><cites>FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21036472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19115868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/948853$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barringer, Joshua E</creatorcontrib><creatorcontrib>Messman, Jamie M</creatorcontrib><creatorcontrib>Banaszek, Abigail L</creatorcontrib><creatorcontrib>Meyer, Harry M</creatorcontrib><creatorcontrib>Kilbey, S. Michael</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Lactones - chemistry</subject><subject>Polyvinyls - chemistry</subject><subject>Proteins - chemistry</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKAzEUBuAgitbqwheQcaHoYjSXuSRLLV4KgoLuXITTTNJGMolOMkL79I606MbV4Rw-_gM_QkcEXxJMyZUDjqmg5XwLjUhJcV5yWm-jEa4LltdFxfbQfozvGGPBCrGL9oggpOQVH6G3aduGmXV2BckGnwWT3djQBqdV73TMhtNzcMvzL-uXrrGtToulg5UDlYLXF_kk-ATWWz_PXvrOgNLZiwJjgmviAdox4KI-3Mwxer27fZ085I9P99PJ9WMOrBIpVwyYMbRgrMCiVkZjGEbDqWZEUCBGENFQqjnDGFRjGk6KmaHCECGGjY3RyTo2xGRlVDZptVDBe62SFAXnJRvM2dp8dOGz1zHJ1kalnQOvQx9lVdW8ZnU1wIs1VF2IsdNGfnS2hW4pCZY_Zcvfsgd7vAntZ61u_uSm3QGcbgBEBc504JWNv44SzKqipn8OVJTvoe_8UNc_D78B-eOUCw</recordid><startdate>20090106</startdate><enddate>20090106</enddate><creator>Barringer, Joshua E</creator><creator>Messman, Jamie M</creator><creator>Banaszek, Abigail L</creator><creator>Meyer, Harry M</creator><creator>Kilbey, S. Michael</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090106</creationdate><title>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</title><author>Barringer, Joshua E ; Messman, Jamie M ; Banaszek, Abigail L ; Meyer, Harry M ; Kilbey, S. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Lactones - chemistry</topic><topic>Polyvinyls - chemistry</topic><topic>Proteins - chemistry</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barringer, Joshua E</creatorcontrib><creatorcontrib>Messman, Jamie M</creatorcontrib><creatorcontrib>Banaszek, Abigail L</creatorcontrib><creatorcontrib>Meyer, Harry M</creatorcontrib><creatorcontrib>Kilbey, S. Michael</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barringer, Joshua E</au><au>Messman, Jamie M</au><au>Banaszek, Abigail L</au><au>Meyer, Harry M</au><au>Kilbey, S. Michael</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2009-01-06</date><risdate>2009</risdate><volume>25</volume><issue>1</issue><spage>262</spage><epage>268</epage><pages>262-268</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19115868</pmid><doi>10.1021/la802925g</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2009-01, Vol.25 (1), p.262-268 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_osti_scitechconnect_948853 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalysis Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Interfaces: Adsorption, Reactions, Films, Forces Lactones - chemistry Polyvinyls - chemistry Proteins - chemistry Surface physical chemistry Surface Properties Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Biomolecules%20on%20Poly(vinyldimethylazlactone)-Containing%20Surface%20Scaffolds&rft.jtitle=Langmuir&rft.au=Barringer,%20Joshua%20E&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2009-01-06&rft.volume=25&rft.issue=1&rft.spage=262&rft.epage=268&rft.pages=262-268&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la802925g&rft_dat=%3Cproquest_osti_%3E66787376%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66787376&rft_id=info:pmid/19115868&rfr_iscdi=true |