Loading…

Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds

We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2009-01, Vol.25 (1), p.262-268
Main Authors: Barringer, Joshua E, Messman, Jamie M, Banaszek, Abigail L, Meyer, Harry M, Kilbey, S. Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3
cites cdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3
container_end_page 268
container_issue 1
container_start_page 262
container_title Langmuir
container_volume 25
creator Barringer, Joshua E
Messman, Jamie M
Banaszek, Abigail L
Meyer, Harry M
Kilbey, S. Michael
description We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.
doi_str_mv 10.1021/la802925g
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_948853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66787376</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgitbqwheQcaHoYjSXuSRLLV4KgoLuXITTTNJGMolOMkL79I606MbV4Rw-_gM_QkcEXxJMyZUDjqmg5XwLjUhJcV5yWm-jEa4LltdFxfbQfozvGGPBCrGL9oggpOQVH6G3aduGmXV2BckGnwWT3djQBqdV73TMhtNzcMvzL-uXrrGtToulg5UDlYLXF_kk-ATWWz_PXvrOgNLZiwJjgmviAdox4KI-3Mwxer27fZ085I9P99PJ9WMOrBIpVwyYMbRgrMCiVkZjGEbDqWZEUCBGENFQqjnDGFRjGk6KmaHCECGGjY3RyTo2xGRlVDZptVDBe62SFAXnJRvM2dp8dOGz1zHJ1kalnQOvQx9lVdW8ZnU1wIs1VF2IsdNGfnS2hW4pCZY_Zcvfsgd7vAntZ61u_uSm3QGcbgBEBc504JWNv44SzKqipn8OVJTvoe_8UNc_D78B-eOUCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66787376</pqid></control><display><type>article</type><title>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Barringer, Joshua E ; Messman, Jamie M ; Banaszek, Abigail L ; Meyer, Harry M ; Kilbey, S. Michael</creator><creatorcontrib>Barringer, Joshua E ; Messman, Jamie M ; Banaszek, Abigail L ; Meyer, Harry M ; Kilbey, S. Michael ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la802925g</identifier><identifier>PMID: 19115868</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Lactones - chemistry ; Polyvinyls - chemistry ; Proteins - chemistry ; Surface physical chemistry ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2009-01, Vol.25 (1), p.262-268</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</citedby><cites>FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21036472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19115868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/948853$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barringer, Joshua E</creatorcontrib><creatorcontrib>Messman, Jamie M</creatorcontrib><creatorcontrib>Banaszek, Abigail L</creatorcontrib><creatorcontrib>Meyer, Harry M</creatorcontrib><creatorcontrib>Kilbey, S. Michael</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Lactones - chemistry</subject><subject>Polyvinyls - chemistry</subject><subject>Proteins - chemistry</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKAzEUBuAgitbqwheQcaHoYjSXuSRLLV4KgoLuXITTTNJGMolOMkL79I606MbV4Rw-_gM_QkcEXxJMyZUDjqmg5XwLjUhJcV5yWm-jEa4LltdFxfbQfozvGGPBCrGL9oggpOQVH6G3aduGmXV2BckGnwWT3djQBqdV73TMhtNzcMvzL-uXrrGtToulg5UDlYLXF_kk-ATWWz_PXvrOgNLZiwJjgmviAdox4KI-3Mwxer27fZ085I9P99PJ9WMOrBIpVwyYMbRgrMCiVkZjGEbDqWZEUCBGENFQqjnDGFRjGk6KmaHCECGGjY3RyTo2xGRlVDZptVDBe62SFAXnJRvM2dp8dOGz1zHJ1kalnQOvQx9lVdW8ZnU1wIs1VF2IsdNGfnS2hW4pCZY_Zcvfsgd7vAntZ61u_uSm3QGcbgBEBc504JWNv44SzKqipn8OVJTvoe_8UNc_D78B-eOUCw</recordid><startdate>20090106</startdate><enddate>20090106</enddate><creator>Barringer, Joshua E</creator><creator>Messman, Jamie M</creator><creator>Banaszek, Abigail L</creator><creator>Meyer, Harry M</creator><creator>Kilbey, S. Michael</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090106</creationdate><title>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</title><author>Barringer, Joshua E ; Messman, Jamie M ; Banaszek, Abigail L ; Meyer, Harry M ; Kilbey, S. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Lactones - chemistry</topic><topic>Polyvinyls - chemistry</topic><topic>Proteins - chemistry</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barringer, Joshua E</creatorcontrib><creatorcontrib>Messman, Jamie M</creatorcontrib><creatorcontrib>Banaszek, Abigail L</creatorcontrib><creatorcontrib>Meyer, Harry M</creatorcontrib><creatorcontrib>Kilbey, S. Michael</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barringer, Joshua E</au><au>Messman, Jamie M</au><au>Banaszek, Abigail L</au><au>Meyer, Harry M</au><au>Kilbey, S. Michael</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2009-01-06</date><risdate>2009</risdate><volume>25</volume><issue>1</issue><spage>262</spage><epage>268</epage><pages>262-268</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>We describe the successful development of a procedure for the step-by-step formation of a reactive, multilayer polymer scaffold incorporating polymers based on 2-vinyl-4,4-dimethylazlactone (VDMA) on a silicon wafer and the characterization of these materials. Also discussed is the development of a procedure for the nonsite specific attachment of a biomolecule to a modified silicon wafer, including scaffolds modified via drop-on-demand (DOD) inkjet printing. VDMA-based polymers were used because of their hydrolytic stability and ability of the pendant azlactone rings to form stable covalent bonds with primary amines without byproducts via nucleophilic addition. This reaction proceeds without a catalyst and at room temperature, yielding a stable amide linkage, which adds to the ease of construction expected when using VDMA-based polymers. DOD inkjet printing was explored as an interesting method for creating surfaces with one or more patterns of biomolecules because of the flexibility and ease of pattern design.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19115868</pmid><doi>10.1021/la802925g</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2009-01, Vol.25 (1), p.262-268
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_948853
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Interfaces: Adsorption, Reactions, Films, Forces
Lactones - chemistry
Polyvinyls - chemistry
Proteins - chemistry
Surface physical chemistry
Surface Properties
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Immobilization of Biomolecules on Poly(vinyldimethylazlactone)-Containing Surface Scaffolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Biomolecules%20on%20Poly(vinyldimethylazlactone)-Containing%20Surface%20Scaffolds&rft.jtitle=Langmuir&rft.au=Barringer,%20Joshua%20E&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2009-01-06&rft.volume=25&rft.issue=1&rft.spage=262&rft.epage=268&rft.pages=262-268&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la802925g&rft_dat=%3Cproquest_osti_%3E66787376%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-c3a3ff24334097cfe0a97cd82e3192a1f919d22e8300acdfd814bf29f199dfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66787376&rft_id=info:pmid/19115868&rfr_iscdi=true