Loading…
Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents
Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely...
Saved in:
Published in: | Langmuir 2008-07, Vol.24 (13), p.6705-6711 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53 |
---|---|
cites | cdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53 |
container_end_page | 6711 |
container_issue | 13 |
container_start_page | 6705 |
container_title | Langmuir |
container_volume | 24 |
creator | Beppler, Benjamin K Varanasi, Kalyani S Garoff, Stephen Evmenenko, Guennadi Woods, Kristina |
description | Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents. |
doi_str_mv | 10.1021/la8004882 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_959540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69254624</sourcerecordid><originalsourceid>FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</originalsourceid><addsrcrecordid>eNptkV-PEyEUxSdG49bVB7-AwQdNfBgFBgbm0XStbtLEja36SChz2bJSqMD459tL06b74sslN-d3ziX3Ns1zgt8STMk7ryXGTEr6oJkRTnHLJRUPmxkWrGsF67uL5knOdxjjoWPD4-aCSE6olHjWlOtg_QTBAIoWLfzkxlrjbxQDKltAV7CP2RVX26qvop82HtBqSlabokPJaL1Ncbrdoi9gYHThFs1jKFVESxcgH1zfotfFHWzR_4Lqedo8stpneHZ6L5uviw_r-ad2-fnj9fz9stVMdKXVXU2kTAsMWhNsgBnJGO2FJFZvRmBYinGskh3NQIhgpGe9MBsO0tpx5N1l8_KYG3NxKhtXwGxNDAFMUQMfOMOVeX1k9in-nCAXtXPZgPc6QJyy6gfKWU9ZBd8cQZNizgms2ie30-mvIlgdzqDOZ6jsi1PotNnBeE-e9l6BVydAZ6O9TToYl88cxXXkMMjKtUfO5QJ_zrpOP1QvOsHV-malroYlW9yQ74rf52qT1V2cUqj7_c8H_wFuKqsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69254624</pqid></control><display><type>article</type><title>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Beppler, Benjamin K ; Varanasi, Kalyani S ; Garoff, Stephen ; Evmenenko, Guennadi ; Woods, Kristina</creator><creatorcontrib>Beppler, Benjamin K ; Varanasi, Kalyani S ; Garoff, Stephen ; Evmenenko, Guennadi ; Woods, Kristina ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la8004882</identifier><identifier>PMID: 18512880</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; DEPOSITION ; DIP COATING ; EVAPORATION ; Exact sciences and technology ; FLUID FLOW ; General and physical chemistry ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Interfaces: Adsorption, Reactions, Films, Forces ; ISLANDS ; national synchrotron light source ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; ROLLING ; SOLVENTS ; SUBSTRATES ; Surface physical chemistry ; SURFACTANTS ; THIN FILMS</subject><ispartof>Langmuir, 2008-07, Vol.24 (13), p.6705-6711</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</citedby><cites>FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20462998$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18512880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/959540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beppler, Benjamin K</creatorcontrib><creatorcontrib>Varanasi, Kalyani S</creatorcontrib><creatorcontrib>Garoff, Stephen</creatorcontrib><creatorcontrib>Evmenenko, Guennadi</creatorcontrib><creatorcontrib>Woods, Kristina</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>DEPOSITION</subject><subject>DIP COATING</subject><subject>EVAPORATION</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>General and physical chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>ISLANDS</subject><subject>national synchrotron light source</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>ROLLING</subject><subject>SOLVENTS</subject><subject>SUBSTRATES</subject><subject>Surface physical chemistry</subject><subject>SURFACTANTS</subject><subject>THIN FILMS</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkV-PEyEUxSdG49bVB7-AwQdNfBgFBgbm0XStbtLEja36SChz2bJSqMD459tL06b74sslN-d3ziX3Ns1zgt8STMk7ryXGTEr6oJkRTnHLJRUPmxkWrGsF67uL5knOdxjjoWPD4-aCSE6olHjWlOtg_QTBAIoWLfzkxlrjbxQDKltAV7CP2RVX26qvop82HtBqSlabokPJaL1Ncbrdoi9gYHThFs1jKFVESxcgH1zfotfFHWzR_4Lqedo8stpneHZ6L5uviw_r-ad2-fnj9fz9stVMdKXVXU2kTAsMWhNsgBnJGO2FJFZvRmBYinGskh3NQIhgpGe9MBsO0tpx5N1l8_KYG3NxKhtXwGxNDAFMUQMfOMOVeX1k9in-nCAXtXPZgPc6QJyy6gfKWU9ZBd8cQZNizgms2ie30-mvIlgdzqDOZ6jsi1PotNnBeE-e9l6BVydAZ6O9TToYl88cxXXkMMjKtUfO5QJ_zrpOP1QvOsHV-malroYlW9yQ74rf52qT1V2cUqj7_c8H_wFuKqsM</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Beppler, Benjamin K</creator><creator>Varanasi, Kalyani S</creator><creator>Garoff, Stephen</creator><creator>Evmenenko, Guennadi</creator><creator>Woods, Kristina</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20080701</creationdate><title>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</title><author>Beppler, Benjamin K ; Varanasi, Kalyani S ; Garoff, Stephen ; Evmenenko, Guennadi ; Woods, Kristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>DEPOSITION</topic><topic>DIP COATING</topic><topic>EVAPORATION</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>General and physical chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>ISLANDS</topic><topic>national synchrotron light source</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>ROLLING</topic><topic>SOLVENTS</topic><topic>SUBSTRATES</topic><topic>Surface physical chemistry</topic><topic>SURFACTANTS</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beppler, Benjamin K</creatorcontrib><creatorcontrib>Varanasi, Kalyani S</creatorcontrib><creatorcontrib>Garoff, Stephen</creatorcontrib><creatorcontrib>Evmenenko, Guennadi</creatorcontrib><creatorcontrib>Woods, Kristina</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beppler, Benjamin K</au><au>Varanasi, Kalyani S</au><au>Garoff, Stephen</au><au>Evmenenko, Guennadi</au><au>Woods, Kristina</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>13</issue><spage>6705</spage><epage>6711</epage><pages>6705-6711</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18512880</pmid><doi>10.1021/la8004882</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2008-07, Vol.24 (13), p.6705-6711 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_osti_scitechconnect_959540 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Colloidal state and disperse state DEPOSITION DIP COATING EVAPORATION Exact sciences and technology FLUID FLOW General and physical chemistry INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Interfaces: Adsorption, Reactions, Films, Forces ISLANDS national synchrotron light source Physical and chemical studies. Granulometry. Electrokinetic phenomena ROLLING SOLVENTS SUBSTRATES Surface physical chemistry SURFACTANTS THIN FILMS |
title | Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Fluid%20Flow%20on%20the%20Deposition%20of%20Soluble%20Surfactants%20Through%20Receding%20Contact%20Lines%20of%20Volatile%20Solvents&rft.jtitle=Langmuir&rft.au=Beppler,%20Benjamin%20K&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2008-07-01&rft.volume=24&rft.issue=13&rft.spage=6705&rft.epage=6711&rft.pages=6705-6711&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la8004882&rft_dat=%3Cproquest_osti_%3E69254624%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69254624&rft_id=info:pmid/18512880&rfr_iscdi=true |