Loading…

Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents

Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2008-07, Vol.24 (13), p.6705-6711
Main Authors: Beppler, Benjamin K, Varanasi, Kalyani S, Garoff, Stephen, Evmenenko, Guennadi, Woods, Kristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53
cites cdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53
container_end_page 6711
container_issue 13
container_start_page 6705
container_title Langmuir
container_volume 24
creator Beppler, Benjamin K
Varanasi, Kalyani S
Garoff, Stephen
Evmenenko, Guennadi
Woods, Kristina
description Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.
doi_str_mv 10.1021/la8004882
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_959540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69254624</sourcerecordid><originalsourceid>FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</originalsourceid><addsrcrecordid>eNptkV-PEyEUxSdG49bVB7-AwQdNfBgFBgbm0XStbtLEja36SChz2bJSqMD459tL06b74sslN-d3ziX3Ns1zgt8STMk7ryXGTEr6oJkRTnHLJRUPmxkWrGsF67uL5knOdxjjoWPD4-aCSE6olHjWlOtg_QTBAIoWLfzkxlrjbxQDKltAV7CP2RVX26qvop82HtBqSlabokPJaL1Ncbrdoi9gYHThFs1jKFVESxcgH1zfotfFHWzR_4Lqedo8stpneHZ6L5uviw_r-ad2-fnj9fz9stVMdKXVXU2kTAsMWhNsgBnJGO2FJFZvRmBYinGskh3NQIhgpGe9MBsO0tpx5N1l8_KYG3NxKhtXwGxNDAFMUQMfOMOVeX1k9in-nCAXtXPZgPc6QJyy6gfKWU9ZBd8cQZNizgms2ie30-mvIlgdzqDOZ6jsi1PotNnBeE-e9l6BVydAZ6O9TToYl88cxXXkMMjKtUfO5QJ_zrpOP1QvOsHV-malroYlW9yQ74rf52qT1V2cUqj7_c8H_wFuKqsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69254624</pqid></control><display><type>article</type><title>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Beppler, Benjamin K ; Varanasi, Kalyani S ; Garoff, Stephen ; Evmenenko, Guennadi ; Woods, Kristina</creator><creatorcontrib>Beppler, Benjamin K ; Varanasi, Kalyani S ; Garoff, Stephen ; Evmenenko, Guennadi ; Woods, Kristina ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la8004882</identifier><identifier>PMID: 18512880</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; DEPOSITION ; DIP COATING ; EVAPORATION ; Exact sciences and technology ; FLUID FLOW ; General and physical chemistry ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Interfaces: Adsorption, Reactions, Films, Forces ; ISLANDS ; national synchrotron light source ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; ROLLING ; SOLVENTS ; SUBSTRATES ; Surface physical chemistry ; SURFACTANTS ; THIN FILMS</subject><ispartof>Langmuir, 2008-07, Vol.24 (13), p.6705-6711</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</citedby><cites>FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20462998$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18512880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/959540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beppler, Benjamin K</creatorcontrib><creatorcontrib>Varanasi, Kalyani S</creatorcontrib><creatorcontrib>Garoff, Stephen</creatorcontrib><creatorcontrib>Evmenenko, Guennadi</creatorcontrib><creatorcontrib>Woods, Kristina</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>DEPOSITION</subject><subject>DIP COATING</subject><subject>EVAPORATION</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>General and physical chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>ISLANDS</subject><subject>national synchrotron light source</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>ROLLING</subject><subject>SOLVENTS</subject><subject>SUBSTRATES</subject><subject>Surface physical chemistry</subject><subject>SURFACTANTS</subject><subject>THIN FILMS</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkV-PEyEUxSdG49bVB7-AwQdNfBgFBgbm0XStbtLEja36SChz2bJSqMD459tL06b74sslN-d3ziX3Ns1zgt8STMk7ryXGTEr6oJkRTnHLJRUPmxkWrGsF67uL5knOdxjjoWPD4-aCSE6olHjWlOtg_QTBAIoWLfzkxlrjbxQDKltAV7CP2RVX26qvop82HtBqSlabokPJaL1Ncbrdoi9gYHThFs1jKFVESxcgH1zfotfFHWzR_4Lqedo8stpneHZ6L5uviw_r-ad2-fnj9fz9stVMdKXVXU2kTAsMWhNsgBnJGO2FJFZvRmBYinGskh3NQIhgpGe9MBsO0tpx5N1l8_KYG3NxKhtXwGxNDAFMUQMfOMOVeX1k9in-nCAXtXPZgPc6QJyy6gfKWU9ZBd8cQZNizgms2ie30-mvIlgdzqDOZ6jsi1PotNnBeE-e9l6BVydAZ6O9TToYl88cxXXkMMjKtUfO5QJ_zrpOP1QvOsHV-malroYlW9yQ74rf52qT1V2cUqj7_c8H_wFuKqsM</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Beppler, Benjamin K</creator><creator>Varanasi, Kalyani S</creator><creator>Garoff, Stephen</creator><creator>Evmenenko, Guennadi</creator><creator>Woods, Kristina</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20080701</creationdate><title>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</title><author>Beppler, Benjamin K ; Varanasi, Kalyani S ; Garoff, Stephen ; Evmenenko, Guennadi ; Woods, Kristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>DEPOSITION</topic><topic>DIP COATING</topic><topic>EVAPORATION</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>General and physical chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>ISLANDS</topic><topic>national synchrotron light source</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>ROLLING</topic><topic>SOLVENTS</topic><topic>SUBSTRATES</topic><topic>Surface physical chemistry</topic><topic>SURFACTANTS</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beppler, Benjamin K</creatorcontrib><creatorcontrib>Varanasi, Kalyani S</creatorcontrib><creatorcontrib>Garoff, Stephen</creatorcontrib><creatorcontrib>Evmenenko, Guennadi</creatorcontrib><creatorcontrib>Woods, Kristina</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beppler, Benjamin K</au><au>Varanasi, Kalyani S</au><au>Garoff, Stephen</au><au>Evmenenko, Guennadi</au><au>Woods, Kristina</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>13</issue><spage>6705</spage><epage>6711</epage><pages>6705-6711</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Soluble surfactants are often deposited from volatile solvents through moving contact lines. In this study, we demonstrate that altering the flow field near such a contact line fundamentally changes the deposited surfactant structure. At slow contact line speeds, the substrate emerges dry. A densely packed, tilted monolayer of surfactant is deposited along the solid−vapor interface from the rolling fluid motion at the contact line. At faster speeds, the substrate emerges with an evaporating thin film entrained on its surface. Surfactant is confined in the film in a constantly increasing concentration environment. Monodisperse crystalline islands nucleate and grow on the surface with sizes and shapes controlled by varying the deposition conditions. These results contrast with disordered deposits that result from evaporation at a pinned contact line. Our results suggest that dip-coating with control of dipping speed and evaporation rate may provide better control of deposition through contact lines of evaporating solvents.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18512880</pmid><doi>10.1021/la8004882</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-07, Vol.24 (13), p.6705-6711
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_959540
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Colloidal state and disperse state
DEPOSITION
DIP COATING
EVAPORATION
Exact sciences and technology
FLUID FLOW
General and physical chemistry
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Interfaces: Adsorption, Reactions, Films, Forces
ISLANDS
national synchrotron light source
Physical and chemical studies. Granulometry. Electrokinetic phenomena
ROLLING
SOLVENTS
SUBSTRATES
Surface physical chemistry
SURFACTANTS
THIN FILMS
title Influence of Fluid Flow on the Deposition of Soluble Surfactants Through Receding Contact Lines of Volatile Solvents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Fluid%20Flow%20on%20the%20Deposition%20of%20Soluble%20Surfactants%20Through%20Receding%20Contact%20Lines%20of%20Volatile%20Solvents&rft.jtitle=Langmuir&rft.au=Beppler,%20Benjamin%20K&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2008-07-01&rft.volume=24&rft.issue=13&rft.spage=6705&rft.epage=6711&rft.pages=6705-6711&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la8004882&rft_dat=%3Cproquest_osti_%3E69254624%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a473t-a3ced24a70eaa10ce4c84426781fabde4087ddaa1fdc9117416467cb5e8ffdd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69254624&rft_id=info:pmid/18512880&rfr_iscdi=true