Loading…

Water balance in a polymer electrolyte fuel cell system

Polymer electrolyte fuel cell (PEFC) systems operating on carbonaceous fuels require water for fuel processing. Such systems can find wider applications if they do not require a supply of water in addition to the supply of fuel, that is, if they can be self-sustaining based on the water produced at...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2002-11, Vol.112 (2), p.519-530
Main Authors: Ahmed, S, Kopasz, J, Kumar, R, Krumpelt, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803
cites cdi_FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803
container_end_page 530
container_issue 2
container_start_page 519
container_title Journal of power sources
container_volume 112
creator Ahmed, S
Kopasz, J
Kumar, R
Krumpelt, M
description Polymer electrolyte fuel cell (PEFC) systems operating on carbonaceous fuels require water for fuel processing. Such systems can find wider applications if they do not require a supply of water in addition to the supply of fuel, that is, if they can be self-sustaining based on the water produced at the fuel cell stack. This paper considers a generic PEFC system and identifies the parameters that affect, and the extent of their contribution to, the net water balance in the system. These parameters include the steam-to-carbon and the oxygen-to-carbon ratios in the fuel processor, the electrochemical fuel and oxygen utilizations in the fuel cell stack, the ambient pressure and temperature, and the composition of the fuel used. The analysis shows that the amount of water lost from the system as water vapor in the exhaust is very sensitive to the system pressure and ambient temperature, while the amount of water produced in the system is a function of the composition of the fuel. Fuels with a high H/C (hydrogen to carbon atomic ratio) allow the system to be operated as a net water producer under a wider range of operating conditions.
doi_str_mv 10.1016/S0378-7753(02)00452-4
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_961021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775302004524</els_id><sourcerecordid>14633201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOI5-gtAuFF20Vl79WIkMvmDAhYrLkE5XMNKPMekR5u9NT4suXYUqzk1dDiHHFC4p0OzqGXhepHku-TmwCwAhWSp2yIwWOU9ZLuUumf0i--QghA8AoDSHGcnf9IA-qXSjO4OJ6xKdrPpm08YlNmgGH4cBE7vGJjHYNEnYhAHbQ7JndRPw6Oedk9e725fFQ7p8un9c3CxTI7gcUimkpCW3BZRY1JRmtUUGFY8bylmNgtlSGy5rrGStNdMlWKACK56xMcXn5GT6tw-DU8G4Ac276bsuVlNlRoHRyJxNzMr3n2sMg2pdGLvqDvt1UFRknDMYQTmBxvcheLRq5V2r_UZRUKNKtVWpRk8KmNqqVCLmTn8O6GB0Y3105cJfWPAiZyWL3PXEYTTy5dCPhTF6rZ0f-9a9--fSN5RohoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14633201</pqid></control><display><type>article</type><title>Water balance in a polymer electrolyte fuel cell system</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ahmed, S ; Kopasz, J ; Kumar, R ; Krumpelt, M</creator><creatorcontrib>Ahmed, S ; Kopasz, J ; Kumar, R ; Krumpelt, M ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Polymer electrolyte fuel cell (PEFC) systems operating on carbonaceous fuels require water for fuel processing. Such systems can find wider applications if they do not require a supply of water in addition to the supply of fuel, that is, if they can be self-sustaining based on the water produced at the fuel cell stack. This paper considers a generic PEFC system and identifies the parameters that affect, and the extent of their contribution to, the net water balance in the system. These parameters include the steam-to-carbon and the oxygen-to-carbon ratios in the fuel processor, the electrochemical fuel and oxygen utilizations in the fuel cell stack, the ambient pressure and temperature, and the composition of the fuel used. The analysis shows that the amount of water lost from the system as water vapor in the exhaust is very sensitive to the system pressure and ambient temperature, while the amount of water produced in the system is a function of the composition of the fuel. Fuels with a high H/C (hydrogen to carbon atomic ratio) allow the system to be operated as a net water producer under a wider range of operating conditions.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(02)00452-4</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>30 DIRECT ENERGY CONVERSION ; Applied sciences ; BALANCES ; ELECTROLYTES ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cell system ; Fuel cells ; Fuel processing ; POLYMERS ; PROTON EXCHANGE MEMBRANE FUEL CELLS ; WATER ; Water balance</subject><ispartof>Journal of power sources, 2002-11, Vol.112 (2), p.519-530</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803</citedby><cites>FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14387292$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/961021$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, S</creatorcontrib><creatorcontrib>Kopasz, J</creatorcontrib><creatorcontrib>Kumar, R</creatorcontrib><creatorcontrib>Krumpelt, M</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Water balance in a polymer electrolyte fuel cell system</title><title>Journal of power sources</title><description>Polymer electrolyte fuel cell (PEFC) systems operating on carbonaceous fuels require water for fuel processing. Such systems can find wider applications if they do not require a supply of water in addition to the supply of fuel, that is, if they can be self-sustaining based on the water produced at the fuel cell stack. This paper considers a generic PEFC system and identifies the parameters that affect, and the extent of their contribution to, the net water balance in the system. These parameters include the steam-to-carbon and the oxygen-to-carbon ratios in the fuel processor, the electrochemical fuel and oxygen utilizations in the fuel cell stack, the ambient pressure and temperature, and the composition of the fuel used. The analysis shows that the amount of water lost from the system as water vapor in the exhaust is very sensitive to the system pressure and ambient temperature, while the amount of water produced in the system is a function of the composition of the fuel. Fuels with a high H/C (hydrogen to carbon atomic ratio) allow the system to be operated as a net water producer under a wider range of operating conditions.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Applied sciences</subject><subject>BALANCES</subject><subject>ELECTROLYTES</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cell system</subject><subject>Fuel cells</subject><subject>Fuel processing</subject><subject>POLYMERS</subject><subject>PROTON EXCHANGE MEMBRANE FUEL CELLS</subject><subject>WATER</subject><subject>Water balance</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOI5-gtAuFF20Vl79WIkMvmDAhYrLkE5XMNKPMekR5u9NT4suXYUqzk1dDiHHFC4p0OzqGXhepHku-TmwCwAhWSp2yIwWOU9ZLuUumf0i--QghA8AoDSHGcnf9IA-qXSjO4OJ6xKdrPpm08YlNmgGH4cBE7vGJjHYNEnYhAHbQ7JndRPw6Oedk9e725fFQ7p8un9c3CxTI7gcUimkpCW3BZRY1JRmtUUGFY8bylmNgtlSGy5rrGStNdMlWKACK56xMcXn5GT6tw-DU8G4Ac276bsuVlNlRoHRyJxNzMr3n2sMg2pdGLvqDvt1UFRknDMYQTmBxvcheLRq5V2r_UZRUKNKtVWpRk8KmNqqVCLmTn8O6GB0Y3105cJfWPAiZyWL3PXEYTTy5dCPhTF6rZ0f-9a9--fSN5RohoE</recordid><startdate>20021114</startdate><enddate>20021114</enddate><creator>Ahmed, S</creator><creator>Kopasz, J</creator><creator>Kumar, R</creator><creator>Krumpelt, M</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20021114</creationdate><title>Water balance in a polymer electrolyte fuel cell system</title><author>Ahmed, S ; Kopasz, J ; Kumar, R ; Krumpelt, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Applied sciences</topic><topic>BALANCES</topic><topic>ELECTROLYTES</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cell system</topic><topic>Fuel cells</topic><topic>Fuel processing</topic><topic>POLYMERS</topic><topic>PROTON EXCHANGE MEMBRANE FUEL CELLS</topic><topic>WATER</topic><topic>Water balance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, S</creatorcontrib><creatorcontrib>Kopasz, J</creatorcontrib><creatorcontrib>Kumar, R</creatorcontrib><creatorcontrib>Krumpelt, M</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, S</au><au>Kopasz, J</au><au>Kumar, R</au><au>Krumpelt, M</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water balance in a polymer electrolyte fuel cell system</atitle><jtitle>Journal of power sources</jtitle><date>2002-11-14</date><risdate>2002</risdate><volume>112</volume><issue>2</issue><spage>519</spage><epage>530</epage><pages>519-530</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Polymer electrolyte fuel cell (PEFC) systems operating on carbonaceous fuels require water for fuel processing. Such systems can find wider applications if they do not require a supply of water in addition to the supply of fuel, that is, if they can be self-sustaining based on the water produced at the fuel cell stack. This paper considers a generic PEFC system and identifies the parameters that affect, and the extent of their contribution to, the net water balance in the system. These parameters include the steam-to-carbon and the oxygen-to-carbon ratios in the fuel processor, the electrochemical fuel and oxygen utilizations in the fuel cell stack, the ambient pressure and temperature, and the composition of the fuel used. The analysis shows that the amount of water lost from the system as water vapor in the exhaust is very sensitive to the system pressure and ambient temperature, while the amount of water produced in the system is a function of the composition of the fuel. Fuels with a high H/C (hydrogen to carbon atomic ratio) allow the system to be operated as a net water producer under a wider range of operating conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(02)00452-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2002-11, Vol.112 (2), p.519-530
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_961021
source ScienceDirect Freedom Collection 2022-2024
subjects 30 DIRECT ENERGY CONVERSION
Applied sciences
BALANCES
ELECTROLYTES
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cell system
Fuel cells
Fuel processing
POLYMERS
PROTON EXCHANGE MEMBRANE FUEL CELLS
WATER
Water balance
title Water balance in a polymer electrolyte fuel cell system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20balance%20in%20a%20polymer%20electrolyte%20fuel%20cell%20system&rft.jtitle=Journal%20of%20power%20sources&rft.au=Ahmed,%20S&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2002-11-14&rft.volume=112&rft.issue=2&rft.spage=519&rft.epage=530&rft.pages=519-530&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(02)00452-4&rft_dat=%3Cproquest_osti_%3E14633201%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-5455193f809e8d116dfe20b33f8132de42f9ac35deb5daa2a90f014eb3623f803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14633201&rft_id=info:pmid/&rfr_iscdi=true