Loading…
The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds
A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from comput...
Saved in:
Published in: | The journal of physical chemistry. B 2009-08, Vol.113 (31), p.10994-11002 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83 |
---|---|
cites | cdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83 |
container_end_page | 11002 |
container_issue | 31 |
container_start_page | 10994 |
container_title | The journal of physical chemistry. B |
container_volume | 113 |
creator | Bu, Lintao Beckham, Gregg T Crowley, Michael F Chang, Christopher H Matthews, James F Bomble, Yannick J Adney, William S Himmel, Michael E Nimlos, Mark R |
description | A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose. |
doi_str_mv | 10.1021/jp904003z |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_975406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67622999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</originalsourceid><addsrcrecordid>eNptkbtuHCEUhlGUKL4kRV4gIkUspRgHmBlmKe2Vb9JGLuLUiIGDlxULG2CK8ZPkcY29q6RJgbh9fDqHH6FPlJxTwuj3zU6QjpD26Q06pj0jTR3D28OaU8KP0EnOG0JYzxb8PTqiohcd7fpj9OdhDfgqQHqc8UoFk7XaAbYx4VIv7kKBpHRxMeBoX4-u1db5GVO8VGmM69kkVaC5dMG48Ih_RDN5wFX0Ci_B-8nHDPjnlKzSgF3GF75KweBxxrf1efTzU93d-FnH7IzT-DLWOj6gd1b5DB8P8yn6dX31sLxtVvc3d8uLVaM60pemtdAqRqEbB0UGolXPhbaUtryli5a0wMkoKFuA6buOCsXNYIlglBotwKpFe4q-7L0xFyezdgX0WscQQBcphr4jvDJne2aX4u8JcpFbl3XtTQWIU5Z84IwJISr4bQ_qFHNOYOUuua1Ks6REvkQl_0ZV2c8H6TRuwfwjD9lU4OseUDrLTZxSqP_wH9EzOfCbNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67622999</pqid></control><display><type>article</type><title>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Bu, Lintao ; Beckham, Gregg T ; Crowley, Michael F ; Chang, Christopher H ; Matthews, James F ; Bomble, Yannick J ; Adney, William S ; Himmel, Michael E ; Nimlos, Mark R</creator><creatorcontrib>Bu, Lintao ; Beckham, Gregg T ; Crowley, Michael F ; Chang, Christopher H ; Matthews, James F ; Bomble, Yannick J ; Adney, William S ; Himmel, Michael E ; Nimlos, Mark R ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp904003z</identifier><identifier>PMID: 19594145</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; B: Biophysical Chemistry ; BASIC BIOLOGICAL SCIENCES ; Bioenergy ; CELLOBIOSE ; CELLULASE ; CELLULOSE ; Cellulose - chemistry ; Cellulose - metabolism ; Cellulose 1,4-beta-Cellobiosidase - chemistry ; Cellulose 1,4-beta-Cellobiosidase - metabolism ; CHAINS ; Chemical and Biosciences ; Computational Sciences ; ENZYMES ; FREE ENERGY ; GLUCOSE ; HYDROLYSIS ; Hydrophobic and Hydrophilic Interactions ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Materials Science and Semiconductors ; Models, Molecular ; Molecular Conformation ; SIMULATION ; STABILITY ; THERMODYNAMICS ; Trichoderma - enzymology ; TRICHODERMA VIRIDE</subject><ispartof>The journal of physical chemistry. B, 2009-08, Vol.113 (31), p.10994-11002</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</citedby><cites>FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19594145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/975406$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Lintao</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Chang, Christopher H</creatorcontrib><creatorcontrib>Matthews, James F</creatorcontrib><creatorcontrib>Bomble, Yannick J</creatorcontrib><creatorcontrib>Adney, William S</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Nimlos, Mark R</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.</description><subject>09 BIOMASS FUELS</subject><subject>B: Biophysical Chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioenergy</subject><subject>CELLOBIOSE</subject><subject>CELLULASE</subject><subject>CELLULOSE</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - metabolism</subject><subject>Cellulose 1,4-beta-Cellobiosidase - chemistry</subject><subject>Cellulose 1,4-beta-Cellobiosidase - metabolism</subject><subject>CHAINS</subject><subject>Chemical and Biosciences</subject><subject>Computational Sciences</subject><subject>ENZYMES</subject><subject>FREE ENERGY</subject><subject>GLUCOSE</subject><subject>HYDROLYSIS</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science and Semiconductors</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>SIMULATION</subject><subject>STABILITY</subject><subject>THERMODYNAMICS</subject><subject>Trichoderma - enzymology</subject><subject>TRICHODERMA VIRIDE</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkbtuHCEUhlGUKL4kRV4gIkUspRgHmBlmKe2Vb9JGLuLUiIGDlxULG2CK8ZPkcY29q6RJgbh9fDqHH6FPlJxTwuj3zU6QjpD26Q06pj0jTR3D28OaU8KP0EnOG0JYzxb8PTqiohcd7fpj9OdhDfgqQHqc8UoFk7XaAbYx4VIv7kKBpHRxMeBoX4-u1db5GVO8VGmM69kkVaC5dMG48Ih_RDN5wFX0Ci_B-8nHDPjnlKzSgF3GF75KweBxxrf1efTzU93d-FnH7IzT-DLWOj6gd1b5DB8P8yn6dX31sLxtVvc3d8uLVaM60pemtdAqRqEbB0UGolXPhbaUtryli5a0wMkoKFuA6buOCsXNYIlglBotwKpFe4q-7L0xFyezdgX0WscQQBcphr4jvDJne2aX4u8JcpFbl3XtTQWIU5Z84IwJISr4bQ_qFHNOYOUuua1Ks6REvkQl_0ZV2c8H6TRuwfwjD9lU4OseUDrLTZxSqP_wH9EzOfCbNA</recordid><startdate>20090806</startdate><enddate>20090806</enddate><creator>Bu, Lintao</creator><creator>Beckham, Gregg T</creator><creator>Crowley, Michael F</creator><creator>Chang, Christopher H</creator><creator>Matthews, James F</creator><creator>Bomble, Yannick J</creator><creator>Adney, William S</creator><creator>Himmel, Michael E</creator><creator>Nimlos, Mark R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090806</creationdate><title>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</title><author>Bu, Lintao ; Beckham, Gregg T ; Crowley, Michael F ; Chang, Christopher H ; Matthews, James F ; Bomble, Yannick J ; Adney, William S ; Himmel, Michael E ; Nimlos, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>09 BIOMASS FUELS</topic><topic>B: Biophysical Chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioenergy</topic><topic>CELLOBIOSE</topic><topic>CELLULASE</topic><topic>CELLULOSE</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - metabolism</topic><topic>Cellulose 1,4-beta-Cellobiosidase - chemistry</topic><topic>Cellulose 1,4-beta-Cellobiosidase - metabolism</topic><topic>CHAINS</topic><topic>Chemical and Biosciences</topic><topic>Computational Sciences</topic><topic>ENZYMES</topic><topic>FREE ENERGY</topic><topic>GLUCOSE</topic><topic>HYDROLYSIS</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science and Semiconductors</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>SIMULATION</topic><topic>STABILITY</topic><topic>THERMODYNAMICS</topic><topic>Trichoderma - enzymology</topic><topic>TRICHODERMA VIRIDE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Lintao</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Chang, Christopher H</creatorcontrib><creatorcontrib>Matthews, James F</creatorcontrib><creatorcontrib>Bomble, Yannick J</creatorcontrib><creatorcontrib>Adney, William S</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Nimlos, Mark R</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Lintao</au><au>Beckham, Gregg T</au><au>Crowley, Michael F</au><au>Chang, Christopher H</au><au>Matthews, James F</au><au>Bomble, Yannick J</au><au>Adney, William S</au><au>Himmel, Michael E</au><au>Nimlos, Mark R</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-08-06</date><risdate>2009</risdate><volume>113</volume><issue>31</issue><spage>10994</spage><epage>11002</epage><pages>10994-11002</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19594145</pmid><doi>10.1021/jp904003z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2009-08, Vol.113 (31), p.10994-11002 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_osti_scitechconnect_975406 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | 09 BIOMASS FUELS B: Biophysical Chemistry BASIC BIOLOGICAL SCIENCES Bioenergy CELLOBIOSE CELLULASE CELLULOSE Cellulose - chemistry Cellulose - metabolism Cellulose 1,4-beta-Cellobiosidase - chemistry Cellulose 1,4-beta-Cellobiosidase - metabolism CHAINS Chemical and Biosciences Computational Sciences ENZYMES FREE ENERGY GLUCOSE HYDROLYSIS Hydrophobic and Hydrophilic Interactions INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Materials Science and Semiconductors Models, Molecular Molecular Conformation SIMULATION STABILITY THERMODYNAMICS Trichoderma - enzymology TRICHODERMA VIRIDE |
title | The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Energy%20Landscape%20for%20the%20Interaction%20of%20the%20Family%201%20Carbohydrate-Binding%20Module%20and%20the%20Cellulose%20Surface%20is%20Altered%20by%20Hydrolyzed%20Glycosidic%20Bonds&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bu,%20Lintao&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009-08-06&rft.volume=113&rft.issue=31&rft.spage=10994&rft.epage=11002&rft.pages=10994-11002&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp904003z&rft_dat=%3Cproquest_osti_%3E67622999%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67622999&rft_id=info:pmid/19594145&rfr_iscdi=true |