Loading…

The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds

A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from comput...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2009-08, Vol.113 (31), p.10994-11002
Main Authors: Bu, Lintao, Beckham, Gregg T, Crowley, Michael F, Chang, Christopher H, Matthews, James F, Bomble, Yannick J, Adney, William S, Himmel, Michael E, Nimlos, Mark R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83
cites cdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83
container_end_page 11002
container_issue 31
container_start_page 10994
container_title The journal of physical chemistry. B
container_volume 113
creator Bu, Lintao
Beckham, Gregg T
Crowley, Michael F
Chang, Christopher H
Matthews, James F
Bomble, Yannick J
Adney, William S
Himmel, Michael E
Nimlos, Mark R
description A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.
doi_str_mv 10.1021/jp904003z
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_975406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67622999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</originalsourceid><addsrcrecordid>eNptkbtuHCEUhlGUKL4kRV4gIkUspRgHmBlmKe2Vb9JGLuLUiIGDlxULG2CK8ZPkcY29q6RJgbh9fDqHH6FPlJxTwuj3zU6QjpD26Q06pj0jTR3D28OaU8KP0EnOG0JYzxb8PTqiohcd7fpj9OdhDfgqQHqc8UoFk7XaAbYx4VIv7kKBpHRxMeBoX4-u1db5GVO8VGmM69kkVaC5dMG48Ih_RDN5wFX0Ci_B-8nHDPjnlKzSgF3GF75KweBxxrf1efTzU93d-FnH7IzT-DLWOj6gd1b5DB8P8yn6dX31sLxtVvc3d8uLVaM60pemtdAqRqEbB0UGolXPhbaUtryli5a0wMkoKFuA6buOCsXNYIlglBotwKpFe4q-7L0xFyezdgX0WscQQBcphr4jvDJne2aX4u8JcpFbl3XtTQWIU5Z84IwJISr4bQ_qFHNOYOUuua1Ks6REvkQl_0ZV2c8H6TRuwfwjD9lU4OseUDrLTZxSqP_wH9EzOfCbNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67622999</pqid></control><display><type>article</type><title>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Bu, Lintao ; Beckham, Gregg T ; Crowley, Michael F ; Chang, Christopher H ; Matthews, James F ; Bomble, Yannick J ; Adney, William S ; Himmel, Michael E ; Nimlos, Mark R</creator><creatorcontrib>Bu, Lintao ; Beckham, Gregg T ; Crowley, Michael F ; Chang, Christopher H ; Matthews, James F ; Bomble, Yannick J ; Adney, William S ; Himmel, Michael E ; Nimlos, Mark R ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp904003z</identifier><identifier>PMID: 19594145</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; B: Biophysical Chemistry ; BASIC BIOLOGICAL SCIENCES ; Bioenergy ; CELLOBIOSE ; CELLULASE ; CELLULOSE ; Cellulose - chemistry ; Cellulose - metabolism ; Cellulose 1,4-beta-Cellobiosidase - chemistry ; Cellulose 1,4-beta-Cellobiosidase - metabolism ; CHAINS ; Chemical and Biosciences ; Computational Sciences ; ENZYMES ; FREE ENERGY ; GLUCOSE ; HYDROLYSIS ; Hydrophobic and Hydrophilic Interactions ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Materials Science and Semiconductors ; Models, Molecular ; Molecular Conformation ; SIMULATION ; STABILITY ; THERMODYNAMICS ; Trichoderma - enzymology ; TRICHODERMA VIRIDE</subject><ispartof>The journal of physical chemistry. B, 2009-08, Vol.113 (31), p.10994-11002</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</citedby><cites>FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19594145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/975406$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Lintao</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Chang, Christopher H</creatorcontrib><creatorcontrib>Matthews, James F</creatorcontrib><creatorcontrib>Bomble, Yannick J</creatorcontrib><creatorcontrib>Adney, William S</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Nimlos, Mark R</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.</description><subject>09 BIOMASS FUELS</subject><subject>B: Biophysical Chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioenergy</subject><subject>CELLOBIOSE</subject><subject>CELLULASE</subject><subject>CELLULOSE</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - metabolism</subject><subject>Cellulose 1,4-beta-Cellobiosidase - chemistry</subject><subject>Cellulose 1,4-beta-Cellobiosidase - metabolism</subject><subject>CHAINS</subject><subject>Chemical and Biosciences</subject><subject>Computational Sciences</subject><subject>ENZYMES</subject><subject>FREE ENERGY</subject><subject>GLUCOSE</subject><subject>HYDROLYSIS</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science and Semiconductors</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>SIMULATION</subject><subject>STABILITY</subject><subject>THERMODYNAMICS</subject><subject>Trichoderma - enzymology</subject><subject>TRICHODERMA VIRIDE</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkbtuHCEUhlGUKL4kRV4gIkUspRgHmBlmKe2Vb9JGLuLUiIGDlxULG2CK8ZPkcY29q6RJgbh9fDqHH6FPlJxTwuj3zU6QjpD26Q06pj0jTR3D28OaU8KP0EnOG0JYzxb8PTqiohcd7fpj9OdhDfgqQHqc8UoFk7XaAbYx4VIv7kKBpHRxMeBoX4-u1db5GVO8VGmM69kkVaC5dMG48Ih_RDN5wFX0Ci_B-8nHDPjnlKzSgF3GF75KweBxxrf1efTzU93d-FnH7IzT-DLWOj6gd1b5DB8P8yn6dX31sLxtVvc3d8uLVaM60pemtdAqRqEbB0UGolXPhbaUtryli5a0wMkoKFuA6buOCsXNYIlglBotwKpFe4q-7L0xFyezdgX0WscQQBcphr4jvDJne2aX4u8JcpFbl3XtTQWIU5Z84IwJISr4bQ_qFHNOYOUuua1Ks6REvkQl_0ZV2c8H6TRuwfwjD9lU4OseUDrLTZxSqP_wH9EzOfCbNA</recordid><startdate>20090806</startdate><enddate>20090806</enddate><creator>Bu, Lintao</creator><creator>Beckham, Gregg T</creator><creator>Crowley, Michael F</creator><creator>Chang, Christopher H</creator><creator>Matthews, James F</creator><creator>Bomble, Yannick J</creator><creator>Adney, William S</creator><creator>Himmel, Michael E</creator><creator>Nimlos, Mark R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090806</creationdate><title>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</title><author>Bu, Lintao ; Beckham, Gregg T ; Crowley, Michael F ; Chang, Christopher H ; Matthews, James F ; Bomble, Yannick J ; Adney, William S ; Himmel, Michael E ; Nimlos, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>09 BIOMASS FUELS</topic><topic>B: Biophysical Chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioenergy</topic><topic>CELLOBIOSE</topic><topic>CELLULASE</topic><topic>CELLULOSE</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - metabolism</topic><topic>Cellulose 1,4-beta-Cellobiosidase - chemistry</topic><topic>Cellulose 1,4-beta-Cellobiosidase - metabolism</topic><topic>CHAINS</topic><topic>Chemical and Biosciences</topic><topic>Computational Sciences</topic><topic>ENZYMES</topic><topic>FREE ENERGY</topic><topic>GLUCOSE</topic><topic>HYDROLYSIS</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science and Semiconductors</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>SIMULATION</topic><topic>STABILITY</topic><topic>THERMODYNAMICS</topic><topic>Trichoderma - enzymology</topic><topic>TRICHODERMA VIRIDE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Lintao</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>Chang, Christopher H</creatorcontrib><creatorcontrib>Matthews, James F</creatorcontrib><creatorcontrib>Bomble, Yannick J</creatorcontrib><creatorcontrib>Adney, William S</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Nimlos, Mark R</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Lintao</au><au>Beckham, Gregg T</au><au>Crowley, Michael F</au><au>Chang, Christopher H</au><au>Matthews, James F</au><au>Bomble, Yannick J</au><au>Adney, William S</au><au>Himmel, Michael E</au><au>Nimlos, Mark R</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-08-06</date><risdate>2009</risdate><volume>113</volume><issue>31</issue><spage>10994</spage><epage>11002</epage><pages>10994-11002</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase I, on the hydrophobic face of a coarse-grained cellulose Iβ polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 Å, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19594145</pmid><doi>10.1021/jp904003z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2009-08, Vol.113 (31), p.10994-11002
issn 1520-6106
1520-5207
language eng
recordid cdi_osti_scitechconnect_975406
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 09 BIOMASS FUELS
B: Biophysical Chemistry
BASIC BIOLOGICAL SCIENCES
Bioenergy
CELLOBIOSE
CELLULASE
CELLULOSE
Cellulose - chemistry
Cellulose - metabolism
Cellulose 1,4-beta-Cellobiosidase - chemistry
Cellulose 1,4-beta-Cellobiosidase - metabolism
CHAINS
Chemical and Biosciences
Computational Sciences
ENZYMES
FREE ENERGY
GLUCOSE
HYDROLYSIS
Hydrophobic and Hydrophilic Interactions
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Materials Science and Semiconductors
Models, Molecular
Molecular Conformation
SIMULATION
STABILITY
THERMODYNAMICS
Trichoderma - enzymology
TRICHODERMA VIRIDE
title The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Energy%20Landscape%20for%20the%20Interaction%20of%20the%20Family%201%20Carbohydrate-Binding%20Module%20and%20the%20Cellulose%20Surface%20is%20Altered%20by%20Hydrolyzed%20Glycosidic%20Bonds&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bu,%20Lintao&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009-08-06&rft.volume=113&rft.issue=31&rft.spage=10994&rft.epage=11002&rft.pages=10994-11002&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp904003z&rft_dat=%3Cproquest_osti_%3E67622999%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-3fe3a21e4b7a070ca569cf1136318303e60b9128ed54419a6d7f09211dc9efa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67622999&rft_id=info:pmid/19594145&rfr_iscdi=true