Loading…

Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory

Current studies have attributed the remarkable performance of polycrystalline CuInSe2 (CIS) to anomalous grain-boundary (GB) physics in CIS. The recent theory predicts that GBs in CIS are hole barriers, which prevent GB electrons from recombining. We examine the atomic structure and chemical composi...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2006-05, Vol.96 (20), p.205501-205501
Main Authors: Yan, Yanfa, Noufi, R, Al-Jassim, M M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current studies have attributed the remarkable performance of polycrystalline CuInSe2 (CIS) to anomalous grain-boundary (GB) physics in CIS. The recent theory predicts that GBs in CIS are hole barriers, which prevent GB electrons from recombining. We examine the atomic structure and chemical composition of (112) GBs in Cu(In,Ga)Se2 (CIGS) using high-resolution Z-contrast imaging and nanoprobe x-ray energy-dispersive spectroscopy. We show that the theoretically predicted Cu-vacancy rows are not observed in (112) GBs in CIGS. Our first-principles modeling further reveals that the (112) GBs in CIS do not act as hole barriers. Our results suggest that the superior performance of polycrystalline CIS should not be explained solely by the GB behaviors.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.96.205501