Loading…
Giant discrete steps in metal-insulator transition in perovskite manganite wires
Optical lithography is used to fabricate LPCMO wires starting from a single (La(5/8-0.3)Pr(0.3))Ca3/8MnO3 (LPCMO) film epitaxially grown on a LaAlO3(100) substrate. As the width of the wires is decreased, the resistivity of the LPCMO wires exhibits giant and ultrasharp steps upon varying temperature...
Saved in:
Published in: | Physical review letters 2006-10, Vol.97 (16), p.167201-167201, Article 167201 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical lithography is used to fabricate LPCMO wires starting from a single (La(5/8-0.3)Pr(0.3))Ca3/8MnO3 (LPCMO) film epitaxially grown on a LaAlO3(100) substrate. As the width of the wires is decreased, the resistivity of the LPCMO wires exhibits giant and ultrasharp steps upon varying temperature and magnetic field in the vicinity of the metal-insulator transition. The origin of the ultrasharp transitions is attributed to the effect of spatial confinement on the percolative transport in manganites. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.97.167201 |