Loading…
Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image
Logistic regression modeling was applied, as an alternative classification procedure, to a single post-fire Landsat-5 Thematic Mapper image for burned land mapping. The nature of the classification problem in this case allowed the structure and application of logistic regression models, since the de...
Saved in:
Published in: | International journal of remote sensing 2000-01, Vol.21 (4), p.673-687 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-9f3739ac67d73f292b60ee128a074a354609ec448e91de55de541779915037773 |
---|---|
cites | |
container_end_page | 687 |
container_issue | 4 |
container_start_page | 673 |
container_title | International journal of remote sensing |
container_volume | 21 |
creator | Koutsias, N. Karteris, M. |
description | Logistic regression modeling was applied, as an alternative classification procedure, to a single post-fire Landsat-5 Thematic Mapper image for burned land mapping. The nature of the classification problem in this case allowed the structure and application of logistic regression models, since the dependent variable could be expressed in a dichotomous way. The two logistic regression models consisted of the TM 4, TM 7, TM 1 and TM 4, TM 7, TM 2 presented an overall accuracy of 97.37% and 97.30%, respectively and proved to be the most well performing three-channel color composites. The discriminator ability in respect to burned area mapping of each one of the six spectral channels of Thematic Mapper, which was achieved by applying six logistic regression models, agreed with the results taken from the separability indices Jeffries-Matusita and Transformed Divergence. |
doi_str_mv | 10.1080/014311600210506 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_1258063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1258063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-9f3739ac67d73f292b60ee128a074a354609ec448e91de55de541779915037773</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK6evebgte6kaZrWmy5-wYqX9VzGdlIrbVOSLrr_vSmrCAviYWYO7_0eM8PYuYBLARksQCRSiBQgFqAgPWAzIdM0UjmIQzab1CjI4pideP8OAKlWesbam43rqeLoCHmHw9D0Nd_4qbe2bvzYlNxR7cj7xva8sxW1k2gNRz7ZWuKD9WNkGkd8hX3lcYwUX79RhxP8FDLJ8abDmk7ZkcHW09n3nLOXu9v18iFaPd8_Lq9XURlOGKPcSC1zLFNdaWniPH5NgUjEGYJOUKokhZzKJMkoFxUpFSoRWue5UCC11nLOFrvc0lnvHZlicGEBty0EFNOzir1nBeJiRwzoS2yNw75s_C8Wqyy4gk3tbE1vrOvww7q2Kkbcttb9MHvRxfg5Bu7qX07-tdsXHrqMrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image</title><source>Taylor and Francis Science and Technology Collection</source><creator>Koutsias, N. ; Karteris, M.</creator><creatorcontrib>Koutsias, N. ; Karteris, M.</creatorcontrib><description>Logistic regression modeling was applied, as an alternative classification procedure, to a single post-fire Landsat-5 Thematic Mapper image for burned land mapping. The nature of the classification problem in this case allowed the structure and application of logistic regression models, since the dependent variable could be expressed in a dichotomous way. The two logistic regression models consisted of the TM 4, TM 7, TM 1 and TM 4, TM 7, TM 2 presented an overall accuracy of 97.37% and 97.30%, respectively and proved to be the most well performing three-channel color composites. The discriminator ability in respect to burned area mapping of each one of the six spectral channels of Thematic Mapper, which was achieved by applying six logistic regression models, agreed with the results taken from the separability indices Jeffries-Matusita and Transformed Divergence.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/014311600210506</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Applied geophysics ; Areal geology. Maps ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geologic maps, cartography ; Internal geophysics</subject><ispartof>International journal of remote sensing, 2000-01, Vol.21 (4), p.673-687</ispartof><rights>Copyright Taylor & Francis 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-9f3739ac67d73f292b60ee128a074a354609ec448e91de55de541779915037773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1258063$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koutsias, N.</creatorcontrib><creatorcontrib>Karteris, M.</creatorcontrib><title>Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image</title><title>International journal of remote sensing</title><description>Logistic regression modeling was applied, as an alternative classification procedure, to a single post-fire Landsat-5 Thematic Mapper image for burned land mapping. The nature of the classification problem in this case allowed the structure and application of logistic regression models, since the dependent variable could be expressed in a dichotomous way. The two logistic regression models consisted of the TM 4, TM 7, TM 1 and TM 4, TM 7, TM 2 presented an overall accuracy of 97.37% and 97.30%, respectively and proved to be the most well performing three-channel color composites. The discriminator ability in respect to burned area mapping of each one of the six spectral channels of Thematic Mapper, which was achieved by applying six logistic regression models, agreed with the results taken from the separability indices Jeffries-Matusita and Transformed Divergence.</description><subject>Applied geophysics</subject><subject>Areal geology. Maps</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geologic maps, cartography</subject><subject>Internal geophysics</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK6evebgte6kaZrWmy5-wYqX9VzGdlIrbVOSLrr_vSmrCAviYWYO7_0eM8PYuYBLARksQCRSiBQgFqAgPWAzIdM0UjmIQzab1CjI4pideP8OAKlWesbam43rqeLoCHmHw9D0Nd_4qbe2bvzYlNxR7cj7xva8sxW1k2gNRz7ZWuKD9WNkGkd8hX3lcYwUX79RhxP8FDLJ8abDmk7ZkcHW09n3nLOXu9v18iFaPd8_Lq9XURlOGKPcSC1zLFNdaWniPH5NgUjEGYJOUKokhZzKJMkoFxUpFSoRWue5UCC11nLOFrvc0lnvHZlicGEBty0EFNOzir1nBeJiRwzoS2yNw75s_C8Wqyy4gk3tbE1vrOvww7q2Kkbcttb9MHvRxfg5Bu7qX07-tdsXHrqMrQ</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Koutsias, N.</creator><creator>Karteris, M.</creator><general>Taylor & Francis</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image</title><author>Koutsias, N. ; Karteris, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-9f3739ac67d73f292b60ee128a074a354609ec448e91de55de541779915037773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied geophysics</topic><topic>Areal geology. Maps</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geologic maps, cartography</topic><topic>Internal geophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koutsias, N.</creatorcontrib><creatorcontrib>Karteris, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koutsias, N.</au><au>Karteris, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image</atitle><jtitle>International journal of remote sensing</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>21</volume><issue>4</issue><spage>673</spage><epage>687</epage><pages>673-687</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>Logistic regression modeling was applied, as an alternative classification procedure, to a single post-fire Landsat-5 Thematic Mapper image for burned land mapping. The nature of the classification problem in this case allowed the structure and application of logistic regression models, since the dependent variable could be expressed in a dichotomous way. The two logistic regression models consisted of the TM 4, TM 7, TM 1 and TM 4, TM 7, TM 2 presented an overall accuracy of 97.37% and 97.30%, respectively and proved to be the most well performing three-channel color composites. The discriminator ability in respect to burned area mapping of each one of the six spectral channels of Thematic Mapper, which was achieved by applying six logistic regression models, agreed with the results taken from the separability indices Jeffries-Matusita and Transformed Divergence.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/014311600210506</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2000-01, Vol.21 (4), p.673-687 |
issn | 0143-1161 1366-5901 |
language | eng |
recordid | cdi_pascalfrancis_primary_1258063 |
source | Taylor and Francis Science and Technology Collection |
subjects | Applied geophysics Areal geology. Maps Earth sciences Earth, ocean, space Exact sciences and technology Geologic maps, cartography Internal geophysics |
title | Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Burned%20area%20mapping%20using%20logistic%20regression%20modeling%20of%20a%20single%20post-fire%20Landsat-5%20Thematic%20Mapper%20image&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Koutsias,%20N.&rft.date=2000-01-01&rft.volume=21&rft.issue=4&rft.spage=673&rft.epage=687&rft.pages=673-687&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/014311600210506&rft_dat=%3Cpascalfrancis_cross%3E1258063%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-9f3739ac67d73f292b60ee128a074a354609ec448e91de55de541779915037773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |