Loading…

Structural stability in nanocrystalline ZnO

The grain-size effect on phase transition induced by pressure in ZnO nanocrystals has been investigated by in situ high-pressure synchrotron radiation X-ray powder diffraction, optical and electrical resistance measurements. The transition pressure of the B4-to-B1 phase transformation for 12 nm ZnO...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2000-04, Vol.50 (1), p.48-53
Main Authors: Jiang, J. Z, Olsen, J. S, Gerward, L, Frost, D, Rubie, D, Peyronneau, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The grain-size effect on phase transition induced by pressure in ZnO nanocrystals has been investigated by in situ high-pressure synchrotron radiation X-ray powder diffraction, optical and electrical resistance measurements. The transition pressure of the B4-to-B1 phase transformation for 12 nm ZnO is found to be 15.1 GPa while it is 9.9 GPa for bulk ZnO. Three components: the ratio of the volume collapses, the surface energy difference, and the internal energy difference, governing the change of transition pressure in nanocrystals, are uncovered. The enhancement of transition pressure in ZnO nanocrystals as compared with the corresponding bulk material is mainly caused by the surface energy difference between the phases involved. The high-pressure B1 ZnO phase is not metallic in the pressure range up to 18 GPa at room temperature.
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i2000-00233-9