Loading…
Stabilized cubic c1-spline collocation method for solving first-order ordinary initial value problems
This paper is concerned with a construction of a "variable" one-parameter cubic C 1 -spline collocation method for solving the initial value problem (IVP)viz where the collocation point . The presented method will be shown to be strongly unstable if β ≤ 1/2. It turns out that the proposed...
Saved in:
Published in: | International journal of computer mathematics 2000-01, Vol.74 (1), p.87-96 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 87 |
container_title | International journal of computer mathematics |
container_volume | 74 |
creator | Sallam, S. Naim Anwar, M. |
description | This paper is concerned with a construction of a "variable" one-parameter cubic C
1
-spline collocation method for solving the initial value problem (IVP)viz
where the collocation point
. The presented method will be shown to be strongly unstable if β ≤ 1/2. It turns out that the proposed method is a continuous extension of the A-stabilized version of Simpson's rule introduced in [1], if β = 1. Moreover, the method is of order three, for β ∈ (1/2, 1) and is of order four, if β = 1 and y ∈ C
5
[0,b]. |
doi_str_mv | 10.1080/00207160008804924 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_1386512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1386512</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1302-78d8fb91e7c776b4540074c41e419c152a7b2545ec1ba30a0be5728768c6744f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqHwA9g8sAbOjhM7Eguq-JIqMQBzZDsOGDlxZLuF8utJVJg6sNwN9zynuxehcwKXBARcAVDgpAIAIYDVlB2gjACtc6BVeYiyeZ7PwDE6ifFj5mpeZcg8J6mss9-mxXqtrMaa5HF0djBYe-e8lsn6AfcmvfsWdz7g6N3GDm-4syGm3IfWBDxVO8iwxXawyUqHN9KtDR6DV8708RQdddJFc_bbF-j17vZl-ZCvnu4flzer3JICaM5FKzpVE8M155ViJQPgTDNiGKk1KankipasNJooWYAEZUpOBa-ErjhjXbFAF7u9o4xaui7IQdvYjMH203ENKURVEjph1zvMDtNDvfz0wbVNklvnw59TEGjmZJu9ZCed_6vvWU36SsUPmfR-0g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilized cubic c1-spline collocation method for solving first-order ordinary initial value problems</title><source>Taylor and Francis Science and Technology Collection</source><creator>Sallam, S. ; Naim Anwar, M.</creator><creatorcontrib>Sallam, S. ; Naim Anwar, M.</creatorcontrib><description>This paper is concerned with a construction of a "variable" one-parameter cubic C
1
-spline collocation method for solving the initial value problem (IVP)viz
where the collocation point
. The presented method will be shown to be strongly unstable if β ≤ 1/2. It turns out that the proposed method is a continuous extension of the A-stabilized version of Simpson's rule introduced in [1], if β = 1. Moreover, the method is of order three, for β ∈ (1/2, 1) and is of order four, if β = 1 and y ∈ C
5
[0,b].</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207160008804924</identifier><identifier>CODEN: IJCMAT</identifier><language>eng</language><publisher>Abingdon: Gordon and Breach Science Publishers</publisher><subject>A-stability ; A-stabilized Simpson's rule ; absolute stability ; collocation methods ; Exact sciences and technology ; First order initial value problem ; G.1.7 ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use</subject><ispartof>International journal of computer mathematics, 2000-01, Vol.74 (1), p.87-96</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1386512$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sallam, S.</creatorcontrib><creatorcontrib>Naim Anwar, M.</creatorcontrib><title>Stabilized cubic c1-spline collocation method for solving first-order ordinary initial value problems</title><title>International journal of computer mathematics</title><description>This paper is concerned with a construction of a "variable" one-parameter cubic C
1
-spline collocation method for solving the initial value problem (IVP)viz
where the collocation point
. The presented method will be shown to be strongly unstable if β ≤ 1/2. It turns out that the proposed method is a continuous extension of the A-stabilized version of Simpson's rule introduced in [1], if β = 1. Moreover, the method is of order three, for β ∈ (1/2, 1) and is of order four, if β = 1 and y ∈ C
5
[0,b].</description><subject>A-stability</subject><subject>A-stabilized Simpson's rule</subject><subject>absolute stability</subject><subject>collocation methods</subject><subject>Exact sciences and technology</subject><subject>First order initial value problem</subject><subject>G.1.7</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqHwA9g8sAbOjhM7Eguq-JIqMQBzZDsOGDlxZLuF8utJVJg6sNwN9zynuxehcwKXBARcAVDgpAIAIYDVlB2gjACtc6BVeYiyeZ7PwDE6ifFj5mpeZcg8J6mss9-mxXqtrMaa5HF0djBYe-e8lsn6AfcmvfsWdz7g6N3GDm-4syGm3IfWBDxVO8iwxXawyUqHN9KtDR6DV8708RQdddJFc_bbF-j17vZl-ZCvnu4flzer3JICaM5FKzpVE8M155ViJQPgTDNiGKk1KankipasNJooWYAEZUpOBa-ErjhjXbFAF7u9o4xaui7IQdvYjMH203ENKURVEjph1zvMDtNDvfz0wbVNklvnw59TEGjmZJu9ZCed_6vvWU36SsUPmfR-0g</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Sallam, S.</creator><creator>Naim Anwar, M.</creator><general>Gordon and Breach Science Publishers</general><general>Taylor and Francis</general><scope>IQODW</scope></search><sort><creationdate>20000101</creationdate><title>Stabilized cubic c1-spline collocation method for solving first-order ordinary initial value problems</title><author>Sallam, S. ; Naim Anwar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1302-78d8fb91e7c776b4540074c41e419c152a7b2545ec1ba30a0be5728768c6744f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>A-stability</topic><topic>A-stabilized Simpson's rule</topic><topic>absolute stability</topic><topic>collocation methods</topic><topic>Exact sciences and technology</topic><topic>First order initial value problem</topic><topic>G.1.7</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallam, S.</creatorcontrib><creatorcontrib>Naim Anwar, M.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sallam, S.</au><au>Naim Anwar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilized cubic c1-spline collocation method for solving first-order ordinary initial value problems</atitle><jtitle>International journal of computer mathematics</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>74</volume><issue>1</issue><spage>87</spage><epage>96</epage><pages>87-96</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><coden>IJCMAT</coden><abstract>This paper is concerned with a construction of a "variable" one-parameter cubic C
1
-spline collocation method for solving the initial value problem (IVP)viz
where the collocation point
. The presented method will be shown to be strongly unstable if β ≤ 1/2. It turns out that the proposed method is a continuous extension of the A-stabilized version of Simpson's rule introduced in [1], if β = 1. Moreover, the method is of order three, for β ∈ (1/2, 1) and is of order four, if β = 1 and y ∈ C
5
[0,b].</abstract><cop>Abingdon</cop><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/00207160008804924</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7160 |
ispartof | International journal of computer mathematics, 2000-01, Vol.74 (1), p.87-96 |
issn | 0020-7160 1029-0265 |
language | eng |
recordid | cdi_pascalfrancis_primary_1386512 |
source | Taylor and Francis Science and Technology Collection |
subjects | A-stability A-stabilized Simpson's rule absolute stability collocation methods Exact sciences and technology First order initial value problem G.1.7 Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use |
title | Stabilized cubic c1-spline collocation method for solving first-order ordinary initial value problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilized%20cubic%20c1-spline%20collocation%20method%20for%20solving%20first-order%20ordinary%20initial%20value%20problems&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=Sallam,%20S.&rft.date=2000-01-01&rft.volume=74&rft.issue=1&rft.spage=87&rft.epage=96&rft.pages=87-96&rft.issn=0020-7160&rft.eissn=1029-0265&rft.coden=IJCMAT&rft_id=info:doi/10.1080/00207160008804924&rft_dat=%3Cpascalfrancis_infor%3E1386512%3C/pascalfrancis_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1302-78d8fb91e7c776b4540074c41e419c152a7b2545ec1ba30a0be5728768c6744f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |