Loading…
Asp238→Asn Creates a Novel Consensus N-Glycosylation Site in Aspergillus awamori Glucoamylase
A single mutation, Asp238→Asn (D238N), of Aspergillus awamori glucoamylase (GA) was identified that increases extracellular production of the enzyme in Saccharomyces cerevisiae at 37 °C. The mutant was isolated as a suppressor of Gly396→Ser (G396S), a previously isolated temperature‐sensitive mutati...
Saved in:
Published in: | Die Stärke 2002-09, Vol.54 (9), p.385-392 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A single mutation, Asp238→Asn (D238N), of Aspergillus awamori glucoamylase (GA) was identified that increases extracellular production of the enzyme in Saccharomyces cerevisiae at 37 °C. The mutant was isolated as a suppressor of Gly396→Ser (G396S), a previously isolated temperature‐sensitive mutation that decreases the thermostability and extracellular production of GA expressed in S. cerevisiae. Culture supernatants of the double mutant G396S/D238N contained much more GA than supernatants of G396S at 33.5 and 37 °C but not at 30 °C. Additionally, culture supernatants of the D238N contained 1.5 to 2‐fold more GA than supernatants of wild‐type when grown at 37 °C but not at 30 or 33.5 °C. The D238N mutation creates a consensus N‐glycosylation site in GA. Mass spectrometry showed that the molecular weight of D238N was 2319 Da greater than that of the wild‐type GA and that of D238N/G396S was 3094 Da greater than that of G396S, suggesting the presence of an additional N‐linked glycan at residue 238. No difference in thermostability or activity was observed between the G396S and G396S/D238N mutants or between wild‐type and D238N GAs, and D238N did not affect intracellular GA levels at 30 or 37 °C. |
---|---|
ISSN: | 0038-9056 1521-379X |
DOI: | 10.1002/1521-379X(200209)54:9<385::AID-STAR385>3.0.CO;2-S |