Loading…

Biorthogonal Butterworth wavelets derived from discrete interpolatory splines

We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2001-11, Vol.49 (11), p.2682-2692
Main Authors: Averbuch, A.Z., Pevnyi, A.B., Zheludev, V.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3
cites cdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3
container_end_page 2692
container_issue 11
container_start_page 2682
container_title IEEE transactions on signal processing
container_volume 49
creator Averbuch, A.Z.
Pevnyi, A.B.
Zheludev, V.A.
description We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.
doi_str_mv 10.1109/78.960415
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14099454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>960415</ieee_id><sourcerecordid>914656346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdRsFYPXj0tgoiHrckm2SRHW_yCihcFbyHNTnTLdrMmuy39703ZouBphnm_ecy8JDnHaIIxkrdcTGSBKGYHyQhLijNEeXEYe8RIxgT_OE5OQlgihCmVxSh5mVbOd1_u0zW6Tqd914Hf7CbpRq-hhi6kJfhqDWVqvVulZRWMhw7Sqolk62rdOb9NQ1tXDYTT5MjqOsDZvo6T94f7t9lTNn99fJ7dzTNDOOoyQU2OjRR8wUqhOXAjJJK2wJQtNDcGGUNYSTWAMZBLvCBWs5ITm1tmSV6ScXI9-LbeffcQOrWKd0Fd6wZcH5TEtGAFoUUkL_-RS9f7-GtQQkSd5HwH3QyQ8S4ED1a1vlppv1UYqV2sigs1xBrZq72hDkbX1uvGVOFvgSIpKaORuxi4CgB-5b3JD-HjgNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884633276</pqid></control><display><type>article</type><title>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Averbuch, A.Z. ; Pevnyi, A.B. ; Zheludev, V.A.</creator><creatorcontrib>Averbuch, A.Z. ; Pevnyi, A.B. ; Zheludev, V.A.</creatorcontrib><description>We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.960415</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Butterworth filters ; Construction ; Discrete Fourier transforms ; Discrete wavelet transforms ; Fast Fourier transforms ; Filters ; Fourier transforms ; Frequency domain analysis ; Hoisting ; Interpolation ; Libraries ; Polynomials ; Splines ; Waveforms ; Wavelet packets ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2001-11, Vol.49 (11), p.2682-2692</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</citedby><cites>FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/960415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14099454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Averbuch, A.Z.</creatorcontrib><creatorcontrib>Pevnyi, A.B.</creatorcontrib><creatorcontrib>Zheludev, V.A.</creatorcontrib><title>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.</description><subject>Butterworth filters</subject><subject>Construction</subject><subject>Discrete Fourier transforms</subject><subject>Discrete wavelet transforms</subject><subject>Fast Fourier transforms</subject><subject>Filters</subject><subject>Fourier transforms</subject><subject>Frequency domain analysis</subject><subject>Hoisting</subject><subject>Interpolation</subject><subject>Libraries</subject><subject>Polynomials</subject><subject>Splines</subject><subject>Waveforms</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxRdRsFYPXj0tgoiHrckm2SRHW_yCihcFbyHNTnTLdrMmuy39703ZouBphnm_ecy8JDnHaIIxkrdcTGSBKGYHyQhLijNEeXEYe8RIxgT_OE5OQlgihCmVxSh5mVbOd1_u0zW6Tqd914Hf7CbpRq-hhi6kJfhqDWVqvVulZRWMhw7Sqolk62rdOb9NQ1tXDYTT5MjqOsDZvo6T94f7t9lTNn99fJ7dzTNDOOoyQU2OjRR8wUqhOXAjJJK2wJQtNDcGGUNYSTWAMZBLvCBWs5ITm1tmSV6ScXI9-LbeffcQOrWKd0Fd6wZcH5TEtGAFoUUkL_-RS9f7-GtQQkSd5HwH3QyQ8S4ED1a1vlppv1UYqV2sigs1xBrZq72hDkbX1uvGVOFvgSIpKaORuxi4CgB-5b3JD-HjgNg</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Averbuch, A.Z.</creator><creator>Pevnyi, A.B.</creator><creator>Zheludev, V.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20011101</creationdate><title>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</title><author>Averbuch, A.Z. ; Pevnyi, A.B. ; Zheludev, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Butterworth filters</topic><topic>Construction</topic><topic>Discrete Fourier transforms</topic><topic>Discrete wavelet transforms</topic><topic>Fast Fourier transforms</topic><topic>Filters</topic><topic>Fourier transforms</topic><topic>Frequency domain analysis</topic><topic>Hoisting</topic><topic>Interpolation</topic><topic>Libraries</topic><topic>Polynomials</topic><topic>Splines</topic><topic>Waveforms</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averbuch, A.Z.</creatorcontrib><creatorcontrib>Pevnyi, A.B.</creatorcontrib><creatorcontrib>Zheludev, V.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averbuch, A.Z.</au><au>Pevnyi, A.B.</au><au>Zheludev, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2001-11-01</date><risdate>2001</risdate><volume>49</volume><issue>11</issue><spage>2682</spage><epage>2692</epage><pages>2682-2692</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.960415</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2001-11, Vol.49 (11), p.2682-2692
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_14099454
source IEEE Electronic Library (IEL) Journals
subjects Butterworth filters
Construction
Discrete Fourier transforms
Discrete wavelet transforms
Fast Fourier transforms
Filters
Fourier transforms
Frequency domain analysis
Hoisting
Interpolation
Libraries
Polynomials
Splines
Waveforms
Wavelet packets
Wavelet transforms
title Biorthogonal Butterworth wavelets derived from discrete interpolatory splines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biorthogonal%20Butterworth%20wavelets%20derived%20from%20discrete%20interpolatory%20splines&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Averbuch,%20A.Z.&rft.date=2001-11-01&rft.volume=49&rft.issue=11&rft.spage=2682&rft.epage=2692&rft.pages=2682-2692&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.960415&rft_dat=%3Cproquest_pasca%3E914656346%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884633276&rft_id=info:pmid/&rft_ieee_id=960415&rfr_iscdi=true