Loading…
Biorthogonal Butterworth wavelets derived from discrete interpolatory splines
We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related t...
Saved in:
Published in: | IEEE transactions on signal processing 2001-11, Vol.49 (11), p.2682-2692 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3 |
container_end_page | 2692 |
container_issue | 11 |
container_start_page | 2682 |
container_title | IEEE transactions on signal processing |
container_volume | 49 |
creator | Averbuch, A.Z. Pevnyi, A.B. Zheludev, V.A. |
description | We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution. |
doi_str_mv | 10.1109/78.960415 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14099454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>960415</ieee_id><sourcerecordid>914656346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdRsFYPXj0tgoiHrckm2SRHW_yCihcFbyHNTnTLdrMmuy39703ZouBphnm_ecy8JDnHaIIxkrdcTGSBKGYHyQhLijNEeXEYe8RIxgT_OE5OQlgihCmVxSh5mVbOd1_u0zW6Tqd914Hf7CbpRq-hhi6kJfhqDWVqvVulZRWMhw7Sqolk62rdOb9NQ1tXDYTT5MjqOsDZvo6T94f7t9lTNn99fJ7dzTNDOOoyQU2OjRR8wUqhOXAjJJK2wJQtNDcGGUNYSTWAMZBLvCBWs5ITm1tmSV6ScXI9-LbeffcQOrWKd0Fd6wZcH5TEtGAFoUUkL_-RS9f7-GtQQkSd5HwH3QyQ8S4ED1a1vlppv1UYqV2sigs1xBrZq72hDkbX1uvGVOFvgSIpKaORuxi4CgB-5b3JD-HjgNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884633276</pqid></control><display><type>article</type><title>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Averbuch, A.Z. ; Pevnyi, A.B. ; Zheludev, V.A.</creator><creatorcontrib>Averbuch, A.Z. ; Pevnyi, A.B. ; Zheludev, V.A.</creatorcontrib><description>We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.960415</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Butterworth filters ; Construction ; Discrete Fourier transforms ; Discrete wavelet transforms ; Fast Fourier transforms ; Filters ; Fourier transforms ; Frequency domain analysis ; Hoisting ; Interpolation ; Libraries ; Polynomials ; Splines ; Waveforms ; Wavelet packets ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2001-11, Vol.49 (11), p.2682-2692</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</citedby><cites>FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/960415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14099454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Averbuch, A.Z.</creatorcontrib><creatorcontrib>Pevnyi, A.B.</creatorcontrib><creatorcontrib>Zheludev, V.A.</creatorcontrib><title>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.</description><subject>Butterworth filters</subject><subject>Construction</subject><subject>Discrete Fourier transforms</subject><subject>Discrete wavelet transforms</subject><subject>Fast Fourier transforms</subject><subject>Filters</subject><subject>Fourier transforms</subject><subject>Frequency domain analysis</subject><subject>Hoisting</subject><subject>Interpolation</subject><subject>Libraries</subject><subject>Polynomials</subject><subject>Splines</subject><subject>Waveforms</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxRdRsFYPXj0tgoiHrckm2SRHW_yCihcFbyHNTnTLdrMmuy39703ZouBphnm_ecy8JDnHaIIxkrdcTGSBKGYHyQhLijNEeXEYe8RIxgT_OE5OQlgihCmVxSh5mVbOd1_u0zW6Tqd914Hf7CbpRq-hhi6kJfhqDWVqvVulZRWMhw7Sqolk62rdOb9NQ1tXDYTT5MjqOsDZvo6T94f7t9lTNn99fJ7dzTNDOOoyQU2OjRR8wUqhOXAjJJK2wJQtNDcGGUNYSTWAMZBLvCBWs5ITm1tmSV6ScXI9-LbeffcQOrWKd0Fd6wZcH5TEtGAFoUUkL_-RS9f7-GtQQkSd5HwH3QyQ8S4ED1a1vlppv1UYqV2sigs1xBrZq72hDkbX1uvGVOFvgSIpKaORuxi4CgB-5b3JD-HjgNg</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Averbuch, A.Z.</creator><creator>Pevnyi, A.B.</creator><creator>Zheludev, V.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20011101</creationdate><title>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</title><author>Averbuch, A.Z. ; Pevnyi, A.B. ; Zheludev, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Butterworth filters</topic><topic>Construction</topic><topic>Discrete Fourier transforms</topic><topic>Discrete wavelet transforms</topic><topic>Fast Fourier transforms</topic><topic>Filters</topic><topic>Fourier transforms</topic><topic>Frequency domain analysis</topic><topic>Hoisting</topic><topic>Interpolation</topic><topic>Libraries</topic><topic>Polynomials</topic><topic>Splines</topic><topic>Waveforms</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averbuch, A.Z.</creatorcontrib><creatorcontrib>Pevnyi, A.B.</creatorcontrib><creatorcontrib>Zheludev, V.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averbuch, A.Z.</au><au>Pevnyi, A.B.</au><au>Zheludev, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biorthogonal Butterworth wavelets derived from discrete interpolatory splines</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2001-11-01</date><risdate>2001</risdate><volume>49</volume><issue>11</issue><spage>2682</spage><epage>2692</epage><pages>2682-2692</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We present a new family of biorthogonal wavelet transforms and a related library of biorthogonal periodic symmetric waveforms. For the construction, we used the interpolatory discrete splines, which enabled us to design a library of perfect reconstruction filterbanks. These filterbanks are related to Butterworth filters. The construction is performed in a "lifting" manner. The difference from the conventional lifting scheme is that all the transforms are implemented in the frequency domain with the use of the fast Fourier transform (FFT). Two ways to choose the control filters are suggested. The proposed scheme is based on interpolation, and as such, it involves only samples of signals, and it does not require any use of quadrature formulas. These filters have a linear-phase property, and the basic waveforms are symmetric. In addition, these filters yield refined frequency resolution.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.960415</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2001-11, Vol.49 (11), p.2682-2692 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_14099454 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Butterworth filters Construction Discrete Fourier transforms Discrete wavelet transforms Fast Fourier transforms Filters Fourier transforms Frequency domain analysis Hoisting Interpolation Libraries Polynomials Splines Waveforms Wavelet packets Wavelet transforms |
title | Biorthogonal Butterworth wavelets derived from discrete interpolatory splines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biorthogonal%20Butterworth%20wavelets%20derived%20from%20discrete%20interpolatory%20splines&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Averbuch,%20A.Z.&rft.date=2001-11-01&rft.volume=49&rft.issue=11&rft.spage=2682&rft.epage=2692&rft.pages=2682-2692&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.960415&rft_dat=%3Cproquest_pasca%3E914656346%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-84c21c987b5d8a7e7c8909f6145ba7cc0cc35d4aeecce291b3fa5d73f2f5f32d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884633276&rft_id=info:pmid/&rft_ieee_id=960415&rfr_iscdi=true |