Loading…
Preparation and In Vitro Evaluation of Self-Microemulsifying Drug Delivery Systems Containing Idebenone
A new self-microemulsifying drug delivery system (SMEDDS) was developed to increase the dissolution rate, solubility, and, ultimately, bioavailability of a poorly water soluble drug, idebenone. Pseudoternary phase diagrams were used to evaluate the self-microemulsification existence area, and the re...
Saved in:
Published in: | Drug development and industrial pharmacy 2000-01, Vol.26 (5), p.523-529 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new self-microemulsifying drug delivery system (SMEDDS) was developed to increase the dissolution rate, solubility, and, ultimately, bioavailability of a poorly water soluble drug, idebenone. Pseudoternary phase diagrams were used to evaluate the self-microemulsification existence area, and the release rate of idebenone was investigated. The mixtures consisting of Labrafac hydro or Labrafil 2609 (HLB values > 4) with the surfactant (Labrasol containing 80% Transcutol) and cosurfactant (Plurol oleique WL 1173) were found to be optimum formulations. Using the SMEDDS formulations of 5% to 20% of Labrafac hydro or Labrafil 2609 in combination with the surfactant cosurfactant mixing ratio of 3, the microemulsion existence field was wider compared to the other SMEDDS formulations due to high affinity for the continuous phase. The in vitro dissolution rate of idebenone from SMEDDS was more than twofold faster compared with that of tablets. The developed SMEDDS formulation can be used as a possible alternative to traditional oral formulations of idebenone to improve its bioavailability. |
---|---|
ISSN: | 0363-9045 1520-5762 |
DOI: | 10.1081/DDC-100101263 |