Loading…

A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system

A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2003-04, Vol.31 (2), p.264-271
Main Authors: Li, Hongfu, Xie, Zhong-Lian, Wang, Wenxiang, Luo, Yong, Du, Pinzhong, Den, Xue, Wang, Huajun, Yu, Sheng, Niu, Xinjian, Wang, Li, Liu, Shenggang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393
cites cdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393
container_end_page 271
container_issue 2
container_start_page 264
container_title IEEE transactions on plasma science
container_volume 31
creator Li, Hongfu
Xie, Zhong-Lian
Wang, Wenxiang
Luo, Yong
Du, Pinzhong
Den, Xue
Wang, Huajun
Yu, Sheng
Niu, Xinjian
Wang, Li
Liu, Shenggang
description A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.
doi_str_mv 10.1109/TPS.2003.810732
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14776115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1197345</ieee_id><sourcerecordid>342036851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</originalsourceid><addsrcrecordid>eNp9kcFrFDEUxoMouFbPHrwEQXua7Xt5yWZyLEXbYkHBeg5pJrM7ZWayJtmW9a83yxYKHjw9eO_3fXyPj7H3CEtEMGe3P34uBQAtWwRN4gVboCHTGNLqJVsAGGqoRXrN3uR8D4BSgViwb-ecVHN59YeP8bF5iGNx68DLZkhds3FpivPg-XqfYklx5o9D2XDHtyFNbg5z4ZNbz6HwvM8lTG_Zq96NObx7mifs19cvtxdXzc33y-uL85vGkzal0UAuBI9i5aC_8wi-u3OERA6c70XXmQ5a9J2sOyFbHWp2qUOPSq9kT4ZO2OnRd5vi713IxU5D9mEca6a4y9YAalBCyEp-_i8pWmzRtLqCH_8B7-MuzfULi0ahlqAO0NkR8inmnEJvt2mYXNpbBHvowNYO7KEDe-ygKj492brs3dgnN_shP8uk1itEVbkPR24IITyf0WiSiv4CGkeNnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195174057</pqid></control><display><type>article</type><title>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Hongfu ; Xie, Zhong-Lian ; Wang, Wenxiang ; Luo, Yong ; Du, Pinzhong ; Den, Xue ; Wang, Huajun ; Yu, Sheng ; Niu, Xinjian ; Wang, Li ; Liu, Shenggang</creator><creatorcontrib>Li, Hongfu ; Xie, Zhong-Lian ; Wang, Wenxiang ; Luo, Yong ; Du, Pinzhong ; Den, Xue ; Wang, Huajun ; Yu, Sheng ; Niu, Xinjian ; Wang, Li ; Liu, Shenggang</creatorcontrib><description>A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2003.810732</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer programming ; Computer simulation ; Diodes ; Electric potential ; Electron beams ; Electronic tubes, masers ; Electronics ; Exact sciences and technology ; Gyrotrons ; Holes ; Magnetic fields ; Masers; gyrotrons (cyclotron-resonance masers) ; MICR encoding ; Numerical simulation ; Permanent magnets ; Power generation ; Radio frequency ; Surge protectors ; System testing ; Voltage</subject><ispartof>IEEE transactions on plasma science, 2003-04, Vol.31 (2), p.264-271</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</citedby><cites>FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1197345$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14776115$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongfu</creatorcontrib><creatorcontrib>Xie, Zhong-Lian</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Du, Pinzhong</creatorcontrib><creatorcontrib>Den, Xue</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Yu, Sheng</creatorcontrib><creatorcontrib>Niu, Xinjian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Shenggang</creatorcontrib><title>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.</description><subject>Applied sciences</subject><subject>Computer programming</subject><subject>Computer simulation</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Electron beams</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gyrotrons</subject><subject>Holes</subject><subject>Magnetic fields</subject><subject>Masers; gyrotrons (cyclotron-resonance masers)</subject><subject>MICR encoding</subject><subject>Numerical simulation</subject><subject>Permanent magnets</subject><subject>Power generation</subject><subject>Radio frequency</subject><subject>Surge protectors</subject><subject>System testing</subject><subject>Voltage</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kcFrFDEUxoMouFbPHrwEQXua7Xt5yWZyLEXbYkHBeg5pJrM7ZWayJtmW9a83yxYKHjw9eO_3fXyPj7H3CEtEMGe3P34uBQAtWwRN4gVboCHTGNLqJVsAGGqoRXrN3uR8D4BSgViwb-ecVHN59YeP8bF5iGNx68DLZkhds3FpivPg-XqfYklx5o9D2XDHtyFNbg5z4ZNbz6HwvM8lTG_Zq96NObx7mifs19cvtxdXzc33y-uL85vGkzal0UAuBI9i5aC_8wi-u3OERA6c70XXmQ5a9J2sOyFbHWp2qUOPSq9kT4ZO2OnRd5vi713IxU5D9mEca6a4y9YAalBCyEp-_i8pWmzRtLqCH_8B7-MuzfULi0ahlqAO0NkR8inmnEJvt2mYXNpbBHvowNYO7KEDe-ygKj492brs3dgnN_shP8uk1itEVbkPR24IITyf0WiSiv4CGkeNnw</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Li, Hongfu</creator><creator>Xie, Zhong-Lian</creator><creator>Wang, Wenxiang</creator><creator>Luo, Yong</creator><creator>Du, Pinzhong</creator><creator>Den, Xue</creator><creator>Wang, Huajun</creator><creator>Yu, Sheng</creator><creator>Niu, Xinjian</creator><creator>Wang, Li</creator><creator>Liu, Shenggang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030401</creationdate><title>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</title><author>Li, Hongfu ; Xie, Zhong-Lian ; Wang, Wenxiang ; Luo, Yong ; Du, Pinzhong ; Den, Xue ; Wang, Huajun ; Yu, Sheng ; Niu, Xinjian ; Wang, Li ; Liu, Shenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer programming</topic><topic>Computer simulation</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Electron beams</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gyrotrons</topic><topic>Holes</topic><topic>Magnetic fields</topic><topic>Masers; gyrotrons (cyclotron-resonance masers)</topic><topic>MICR encoding</topic><topic>Numerical simulation</topic><topic>Permanent magnets</topic><topic>Power generation</topic><topic>Radio frequency</topic><topic>Surge protectors</topic><topic>System testing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongfu</creatorcontrib><creatorcontrib>Xie, Zhong-Lian</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Du, Pinzhong</creatorcontrib><creatorcontrib>Den, Xue</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Yu, Sheng</creatorcontrib><creatorcontrib>Niu, Xinjian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Shenggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongfu</au><au>Xie, Zhong-Lian</au><au>Wang, Wenxiang</au><au>Luo, Yong</au><au>Du, Pinzhong</au><au>Den, Xue</au><au>Wang, Huajun</au><au>Yu, Sheng</au><au>Niu, Xinjian</au><au>Wang, Li</au><au>Liu, Shenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>31</volume><issue>2</issue><spage>264</spage><epage>271</epage><pages>264-271</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2003.810732</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2003-04, Vol.31 (2), p.264-271
issn 0093-3813
1939-9375
language eng
recordid cdi_pascalfrancis_primary_14776115
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Computer programming
Computer simulation
Diodes
Electric potential
Electron beams
Electronic tubes, masers
Electronics
Exact sciences and technology
Gyrotrons
Holes
Magnetic fields
Masers
gyrotrons (cyclotron-resonance masers)
MICR encoding
Numerical simulation
Permanent magnets
Power generation
Radio frequency
Surge protectors
System testing
Voltage
title A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2035-GHz%20low-voltage%20third-harmonic%20gyrotron%20with%20a%20permanent%20magnet%20system&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Li,%20Hongfu&rft.date=2003-04-01&rft.volume=31&rft.issue=2&rft.spage=264&rft.epage=271&rft.pages=264-271&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2003.810732&rft_dat=%3Cproquest_pasca%3E342036851%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195174057&rft_id=info:pmid/&rft_ieee_id=1197345&rfr_iscdi=true