Loading…
A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system
A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theo...
Saved in:
Published in: | IEEE transactions on plasma science 2003-04, Vol.31 (2), p.264-271 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393 |
container_end_page | 271 |
container_issue | 2 |
container_start_page | 264 |
container_title | IEEE transactions on plasma science |
container_volume | 31 |
creator | Li, Hongfu Xie, Zhong-Lian Wang, Wenxiang Luo, Yong Du, Pinzhong Den, Xue Wang, Huajun Yu, Sheng Niu, Xinjian Wang, Li Liu, Shenggang |
description | A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%. |
doi_str_mv | 10.1109/TPS.2003.810732 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14776115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1197345</ieee_id><sourcerecordid>342036851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</originalsourceid><addsrcrecordid>eNp9kcFrFDEUxoMouFbPHrwEQXua7Xt5yWZyLEXbYkHBeg5pJrM7ZWayJtmW9a83yxYKHjw9eO_3fXyPj7H3CEtEMGe3P34uBQAtWwRN4gVboCHTGNLqJVsAGGqoRXrN3uR8D4BSgViwb-ecVHN59YeP8bF5iGNx68DLZkhds3FpivPg-XqfYklx5o9D2XDHtyFNbg5z4ZNbz6HwvM8lTG_Zq96NObx7mifs19cvtxdXzc33y-uL85vGkzal0UAuBI9i5aC_8wi-u3OERA6c70XXmQ5a9J2sOyFbHWp2qUOPSq9kT4ZO2OnRd5vi713IxU5D9mEca6a4y9YAalBCyEp-_i8pWmzRtLqCH_8B7-MuzfULi0ahlqAO0NkR8inmnEJvt2mYXNpbBHvowNYO7KEDe-ygKj492brs3dgnN_shP8uk1itEVbkPR24IITyf0WiSiv4CGkeNnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195174057</pqid></control><display><type>article</type><title>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Hongfu ; Xie, Zhong-Lian ; Wang, Wenxiang ; Luo, Yong ; Du, Pinzhong ; Den, Xue ; Wang, Huajun ; Yu, Sheng ; Niu, Xinjian ; Wang, Li ; Liu, Shenggang</creator><creatorcontrib>Li, Hongfu ; Xie, Zhong-Lian ; Wang, Wenxiang ; Luo, Yong ; Du, Pinzhong ; Den, Xue ; Wang, Huajun ; Yu, Sheng ; Niu, Xinjian ; Wang, Li ; Liu, Shenggang</creatorcontrib><description>A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2003.810732</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer programming ; Computer simulation ; Diodes ; Electric potential ; Electron beams ; Electronic tubes, masers ; Electronics ; Exact sciences and technology ; Gyrotrons ; Holes ; Magnetic fields ; Masers; gyrotrons (cyclotron-resonance masers) ; MICR encoding ; Numerical simulation ; Permanent magnets ; Power generation ; Radio frequency ; Surge protectors ; System testing ; Voltage</subject><ispartof>IEEE transactions on plasma science, 2003-04, Vol.31 (2), p.264-271</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</citedby><cites>FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1197345$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14776115$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongfu</creatorcontrib><creatorcontrib>Xie, Zhong-Lian</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Du, Pinzhong</creatorcontrib><creatorcontrib>Den, Xue</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Yu, Sheng</creatorcontrib><creatorcontrib>Niu, Xinjian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Shenggang</creatorcontrib><title>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.</description><subject>Applied sciences</subject><subject>Computer programming</subject><subject>Computer simulation</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Electron beams</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gyrotrons</subject><subject>Holes</subject><subject>Magnetic fields</subject><subject>Masers; gyrotrons (cyclotron-resonance masers)</subject><subject>MICR encoding</subject><subject>Numerical simulation</subject><subject>Permanent magnets</subject><subject>Power generation</subject><subject>Radio frequency</subject><subject>Surge protectors</subject><subject>System testing</subject><subject>Voltage</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kcFrFDEUxoMouFbPHrwEQXua7Xt5yWZyLEXbYkHBeg5pJrM7ZWayJtmW9a83yxYKHjw9eO_3fXyPj7H3CEtEMGe3P34uBQAtWwRN4gVboCHTGNLqJVsAGGqoRXrN3uR8D4BSgViwb-ecVHN59YeP8bF5iGNx68DLZkhds3FpivPg-XqfYklx5o9D2XDHtyFNbg5z4ZNbz6HwvM8lTG_Zq96NObx7mifs19cvtxdXzc33y-uL85vGkzal0UAuBI9i5aC_8wi-u3OERA6c70XXmQ5a9J2sOyFbHWp2qUOPSq9kT4ZO2OnRd5vi713IxU5D9mEca6a4y9YAalBCyEp-_i8pWmzRtLqCH_8B7-MuzfULi0ahlqAO0NkR8inmnEJvt2mYXNpbBHvowNYO7KEDe-ygKj492brs3dgnN_shP8uk1itEVbkPR24IITyf0WiSiv4CGkeNnw</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Li, Hongfu</creator><creator>Xie, Zhong-Lian</creator><creator>Wang, Wenxiang</creator><creator>Luo, Yong</creator><creator>Du, Pinzhong</creator><creator>Den, Xue</creator><creator>Wang, Huajun</creator><creator>Yu, Sheng</creator><creator>Niu, Xinjian</creator><creator>Wang, Li</creator><creator>Liu, Shenggang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030401</creationdate><title>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</title><author>Li, Hongfu ; Xie, Zhong-Lian ; Wang, Wenxiang ; Luo, Yong ; Du, Pinzhong ; Den, Xue ; Wang, Huajun ; Yu, Sheng ; Niu, Xinjian ; Wang, Li ; Liu, Shenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer programming</topic><topic>Computer simulation</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Electron beams</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gyrotrons</topic><topic>Holes</topic><topic>Magnetic fields</topic><topic>Masers; gyrotrons (cyclotron-resonance masers)</topic><topic>MICR encoding</topic><topic>Numerical simulation</topic><topic>Permanent magnets</topic><topic>Power generation</topic><topic>Radio frequency</topic><topic>Surge protectors</topic><topic>System testing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongfu</creatorcontrib><creatorcontrib>Xie, Zhong-Lian</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Du, Pinzhong</creatorcontrib><creatorcontrib>Den, Xue</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Yu, Sheng</creatorcontrib><creatorcontrib>Niu, Xinjian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Shenggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongfu</au><au>Xie, Zhong-Lian</au><au>Wang, Wenxiang</au><au>Luo, Yong</au><au>Du, Pinzhong</au><au>Den, Xue</au><au>Wang, Huajun</au><au>Yu, Sheng</au><au>Niu, Xinjian</au><au>Wang, Li</au><au>Liu, Shenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>31</volume><issue>2</issue><spage>264</spage><epage>271</epage><pages>264-271</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A systematic theoretical and experimental study on a 35-GHz 45-kV third-harmonic gyrotron with a permanent magnet system is presented in this paper. A complex cavity with gradual transition and a diode magnetron injection gun (MIG) are employed in the gyrotron. A self-consistent field nonlinear theoretical investigation and numerical simulation for electron beam interaction with RF fields are given. The diode MIG is simulated numerically utilizing our code in detail. The permanent magnet system provided the maximum axial magnetic field of about 4.5 kG in the cavity region of the gyrotron. The Ka band third-harmonic complex cavity gyrotron with a permanent magnet system has been designed, constructed, and tested. A pulse output power of 147.3 kW was obtained at a beam voltage of 45 kV with beam current of 32.2 A, corresponding to an efficiency of 10.2%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2003.810732</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2003-04, Vol.31 (2), p.264-271 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_pascalfrancis_primary_14776115 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Computer programming Computer simulation Diodes Electric potential Electron beams Electronic tubes, masers Electronics Exact sciences and technology Gyrotrons Holes Magnetic fields Masers gyrotrons (cyclotron-resonance masers) MICR encoding Numerical simulation Permanent magnets Power generation Radio frequency Surge protectors System testing Voltage |
title | A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2035-GHz%20low-voltage%20third-harmonic%20gyrotron%20with%20a%20permanent%20magnet%20system&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Li,%20Hongfu&rft.date=2003-04-01&rft.volume=31&rft.issue=2&rft.spage=264&rft.epage=271&rft.pages=264-271&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2003.810732&rft_dat=%3Cproquest_pasca%3E342036851%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-703aeec126a0fbc10cdba3133a0acf2dd9d081cd43132487e00947ef15764f393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195174057&rft_id=info:pmid/&rft_ieee_id=1197345&rfr_iscdi=true |