Loading…
Periodic defects in 2D-PBG materials: full-wave analysis and design
In this paper, an accurate and efficient characterization of two-dimensional photonic bandgap structures with periodic defects is performed, which exploits a full-wave diffraction theory developed for one-dimensional gratings. The high convergence rate of the proposed technique is demonstrated. Resu...
Saved in:
Published in: | IEEE transactions on nanotechnology 2003-09, Vol.2 (3), p.126-134 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, an accurate and efficient characterization of two-dimensional photonic bandgap structures with periodic defects is performed, which exploits a full-wave diffraction theory developed for one-dimensional gratings. The high convergence rate of the proposed technique is demonstrated. Results are presented for both TE and TM polarizations, showing the efficiencies as a function of wavelength, incidence angle, geometrical and physical parameters. A comparison with other theoretical results reported in the literature is shown with a good agreement. The transmission properties of photonic crystals with periodic defects are studied, investigating the effects of the variation of geometrical and physical parameters; design efficiency maps and formulas are given; moreover, the application of the analyzed structures as filters is discussed. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2003.817227 |