Loading…
CO-DIMENSION 2 BIFURCATIONS AND CHAOS IN CANTILEVERED PIPE CONVEYING TIME VARYING FLUID WITH THREE-TO-ONE INTERNAL RESONANCES
The nonlinear behavior of a cantilevered fluid conveying pipe subjected to principal parametric and internal resonances is investigated in this paper. The flow velocity is divided into constant and sinusoidai parts. The velocity value of the constant part is so adjusted such that the system exhibits...
Saved in:
Published in: | Acta mechanica solida Sinica 2003-09, Vol.16 (3), p.245-255 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The nonlinear behavior of a cantilevered fluid conveying pipe subjected to principal parametric and internal resonances is investigated in this paper. The flow velocity is divided into constant and sinusoidai parts. The velocity value of the constant part is so adjusted such that the system exhibits 3:1 internal resonances for the first two modes. The method of multiple scales is employed to obtain the response of the system and a set of four first-order nonlinear ordinary-differential equations for governing the amplitude of the response. The eigenvalues of the Jacobian matrix are used to assess the stability of the equilibrium solutions with varying parameters. The codimension 2 derived from the double-zero eigenvaiues is analyzed in detail. The results show that the response amplitude may undergo saddle-node, pitchfork, Hopf, homoclinic loop and period-doubling bifurcations depending on the frequency and amplitude of the sinusoidal flow. When the frequency of the sinusoidal flow equals exactly half of the first-mode frequency, the system has a route to chaos by period-doubling bifurcation and then returns to a periodic motion as the amplitude of the sinusoidal flow increases. |
---|---|
ISSN: | 0894-9166 1860-2134 |