Loading…

Control in a 3D reconstruction system using selective perception

This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian...

Full description

Saved in:
Bibliographic Details
Main Authors: Marengoni, M., Hanson, A., Zilberstein, S., Riseman, E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1236 vol.2
container_issue
container_start_page 1229
container_title
container_volume 2
creator Marengoni, M.
Hanson, A.
Zilberstein, S.
Riseman, E.
description This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.
doi_str_mv 10.1109/ICCV.1999.790421
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1537007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>790421</ieee_id><sourcerecordid>1537007</sourcerecordid><originalsourceid>FETCH-LOGICAL-i116t-1ee805e0ce89f1982162e4f0e9a97053bd010fd85db200524ea7d2290ce6da463</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxQMiKGvv4ikHr60zaT6am1J1XVjwol6XbDqVSLctSVfY_95KxXd5MO_35vAYu0YoEMHeber6o0BrbWEsSIFnLLOmAqOtAtRSXLAspS-YJRUqDZfsvh76KQ4dDz13vHzkkfzQpyke_RSGnqdTmujAjyn0nzxRR_P5m_hI0dP4S1yx89Z1ibI_X7H356e3-iXfvq439cM2D4h6ypGoAkXgqbIt2kqgFiRbIOusAVXuG0Bom0o1ewGghCRnGiHsXNCNk7pcsdvl7-iSd10bXe9D2o0xHFw87VCVBsDM2M2CBSL6T5c1yh8m31Rn</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Control in a 3D reconstruction system using selective perception</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marengoni, M. ; Hanson, A. ; Zilberstein, S. ; Riseman, E.</creator><creatorcontrib>Marengoni, M. ; Hanson, A. ; Zilberstein, S. ; Riseman, E.</creatorcontrib><description>This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.</description><identifier>ISBN: 9780769501642</identifier><identifier>ISBN: 0769501648</identifier><identifier>DOI: 10.1109/ICCV.1999.790421</identifier><language>eng</language><publisher>Los Alamitos CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian methods ; Computational complexity ; Computer networks ; Computer science; control theory; systems ; Computer vision ; Control systems ; Exact sciences and technology ; High performance computing ; Image reconstruction ; Pattern recognition. Digital image processing. Computational geometry ; Testing ; Uncertainty ; Utility theory</subject><ispartof>Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, Vol.2, p.1229-1236 vol.2</ispartof><rights>2000 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/790421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/790421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1537007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marengoni, M.</creatorcontrib><creatorcontrib>Hanson, A.</creatorcontrib><creatorcontrib>Zilberstein, S.</creatorcontrib><creatorcontrib>Riseman, E.</creatorcontrib><title>Control in a 3D reconstruction system using selective perception</title><title>Proceedings of the Seventh IEEE International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computational complexity</subject><subject>Computer networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Control systems</subject><subject>Exact sciences and technology</subject><subject>High performance computing</subject><subject>Image reconstruction</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Testing</subject><subject>Uncertainty</subject><subject>Utility theory</subject><isbn>9780769501642</isbn><isbn>0769501648</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kM1LxDAQxQMiKGvv4ikHr60zaT6am1J1XVjwol6XbDqVSLctSVfY_95KxXd5MO_35vAYu0YoEMHeber6o0BrbWEsSIFnLLOmAqOtAtRSXLAspS-YJRUqDZfsvh76KQ4dDz13vHzkkfzQpyke_RSGnqdTmujAjyn0nzxRR_P5m_hI0dP4S1yx89Z1ibI_X7H356e3-iXfvq439cM2D4h6ypGoAkXgqbIt2kqgFiRbIOusAVXuG0Bom0o1ewGghCRnGiHsXNCNk7pcsdvl7-iSd10bXe9D2o0xHFw87VCVBsDM2M2CBSL6T5c1yh8m31Rn</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Marengoni, M.</creator><creator>Hanson, A.</creator><creator>Zilberstein, S.</creator><creator>Riseman, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>Control in a 3D reconstruction system using selective perception</title><author>Marengoni, M. ; Hanson, A. ; Zilberstein, S. ; Riseman, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i116t-1ee805e0ce89f1982162e4f0e9a97053bd010fd85db200524ea7d2290ce6da463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computational complexity</topic><topic>Computer networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Control systems</topic><topic>Exact sciences and technology</topic><topic>High performance computing</topic><topic>Image reconstruction</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Testing</topic><topic>Uncertainty</topic><topic>Utility theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Marengoni, M.</creatorcontrib><creatorcontrib>Hanson, A.</creatorcontrib><creatorcontrib>Zilberstein, S.</creatorcontrib><creatorcontrib>Riseman, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marengoni, M.</au><au>Hanson, A.</au><au>Zilberstein, S.</au><au>Riseman, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Control in a 3D reconstruction system using selective perception</atitle><btitle>Proceedings of the Seventh IEEE International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1229</spage><epage>1236 vol.2</epage><pages>1229-1236 vol.2</pages><isbn>9780769501642</isbn><isbn>0769501648</isbn><abstract>This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.</abstract><cop>Los Alamitos CA</cop><pub>IEEE</pub><doi>10.1109/ICCV.1999.790421</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769501642
ispartof Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, Vol.2, p.1229-1236 vol.2
issn
language eng
recordid cdi_pascalfrancis_primary_1537007
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Bayesian methods
Computational complexity
Computer networks
Computer science
control theory
systems
Computer vision
Control systems
Exact sciences and technology
High performance computing
Image reconstruction
Pattern recognition. Digital image processing. Computational geometry
Testing
Uncertainty
Utility theory
title Control in a 3D reconstruction system using selective perception
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Control%20in%20a%203D%20reconstruction%20system%20using%20selective%20perception&rft.btitle=Proceedings%20of%20the%20Seventh%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Marengoni,%20M.&rft.date=1999&rft.volume=2&rft.spage=1229&rft.epage=1236%20vol.2&rft.pages=1229-1236%20vol.2&rft.isbn=9780769501642&rft.isbn_list=0769501648&rft_id=info:doi/10.1109/ICCV.1999.790421&rft_dat=%3Cpascalfrancis_6IE%3E1537007%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i116t-1ee805e0ce89f1982162e4f0e9a97053bd010fd85db200524ea7d2290ce6da463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=790421&rfr_iscdi=true