Loading…
Control in a 3D reconstruction system using selective perception
This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1236 vol.2 |
container_issue | |
container_start_page | 1229 |
container_title | |
container_volume | 2 |
creator | Marengoni, M. Hanson, A. Zilberstein, S. Riseman, E. |
description | This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms. |
doi_str_mv | 10.1109/ICCV.1999.790421 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1537007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>790421</ieee_id><sourcerecordid>1537007</sourcerecordid><originalsourceid>FETCH-LOGICAL-i116t-1ee805e0ce89f1982162e4f0e9a97053bd010fd85db200524ea7d2290ce6da463</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxQMiKGvv4ikHr60zaT6am1J1XVjwol6XbDqVSLctSVfY_95KxXd5MO_35vAYu0YoEMHeber6o0BrbWEsSIFnLLOmAqOtAtRSXLAspS-YJRUqDZfsvh76KQ4dDz13vHzkkfzQpyke_RSGnqdTmujAjyn0nzxRR_P5m_hI0dP4S1yx89Z1ibI_X7H356e3-iXfvq439cM2D4h6ypGoAkXgqbIt2kqgFiRbIOusAVXuG0Bom0o1ewGghCRnGiHsXNCNk7pcsdvl7-iSd10bXe9D2o0xHFw87VCVBsDM2M2CBSL6T5c1yh8m31Rn</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Control in a 3D reconstruction system using selective perception</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marengoni, M. ; Hanson, A. ; Zilberstein, S. ; Riseman, E.</creator><creatorcontrib>Marengoni, M. ; Hanson, A. ; Zilberstein, S. ; Riseman, E.</creatorcontrib><description>This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.</description><identifier>ISBN: 9780769501642</identifier><identifier>ISBN: 0769501648</identifier><identifier>DOI: 10.1109/ICCV.1999.790421</identifier><language>eng</language><publisher>Los Alamitos CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian methods ; Computational complexity ; Computer networks ; Computer science; control theory; systems ; Computer vision ; Control systems ; Exact sciences and technology ; High performance computing ; Image reconstruction ; Pattern recognition. Digital image processing. Computational geometry ; Testing ; Uncertainty ; Utility theory</subject><ispartof>Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, Vol.2, p.1229-1236 vol.2</ispartof><rights>2000 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/790421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/790421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1537007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marengoni, M.</creatorcontrib><creatorcontrib>Hanson, A.</creatorcontrib><creatorcontrib>Zilberstein, S.</creatorcontrib><creatorcontrib>Riseman, E.</creatorcontrib><title>Control in a 3D reconstruction system using selective perception</title><title>Proceedings of the Seventh IEEE International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computational complexity</subject><subject>Computer networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Control systems</subject><subject>Exact sciences and technology</subject><subject>High performance computing</subject><subject>Image reconstruction</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Testing</subject><subject>Uncertainty</subject><subject>Utility theory</subject><isbn>9780769501642</isbn><isbn>0769501648</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kM1LxDAQxQMiKGvv4ikHr60zaT6am1J1XVjwol6XbDqVSLctSVfY_95KxXd5MO_35vAYu0YoEMHeber6o0BrbWEsSIFnLLOmAqOtAtRSXLAspS-YJRUqDZfsvh76KQ4dDz13vHzkkfzQpyke_RSGnqdTmujAjyn0nzxRR_P5m_hI0dP4S1yx89Z1ibI_X7H356e3-iXfvq439cM2D4h6ypGoAkXgqbIt2kqgFiRbIOusAVXuG0Bom0o1ewGghCRnGiHsXNCNk7pcsdvl7-iSd10bXe9D2o0xHFw87VCVBsDM2M2CBSL6T5c1yh8m31Rn</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Marengoni, M.</creator><creator>Hanson, A.</creator><creator>Zilberstein, S.</creator><creator>Riseman, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>Control in a 3D reconstruction system using selective perception</title><author>Marengoni, M. ; Hanson, A. ; Zilberstein, S. ; Riseman, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i116t-1ee805e0ce89f1982162e4f0e9a97053bd010fd85db200524ea7d2290ce6da463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computational complexity</topic><topic>Computer networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Control systems</topic><topic>Exact sciences and technology</topic><topic>High performance computing</topic><topic>Image reconstruction</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Testing</topic><topic>Uncertainty</topic><topic>Utility theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Marengoni, M.</creatorcontrib><creatorcontrib>Hanson, A.</creatorcontrib><creatorcontrib>Zilberstein, S.</creatorcontrib><creatorcontrib>Riseman, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marengoni, M.</au><au>Hanson, A.</au><au>Zilberstein, S.</au><au>Riseman, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Control in a 3D reconstruction system using selective perception</atitle><btitle>Proceedings of the Seventh IEEE International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1229</spage><epage>1236 vol.2</epage><pages>1229-1236 vol.2</pages><isbn>9780769501642</isbn><isbn>0769501648</isbn><abstract>This paper presents a control structure for general purpose image understanding that addresses both the high level of uncertainty in local hypotheses and the computational complexity of image interpretation. The control of vision algorithms is performed by an independent subsystem that uses Bayesian networks and utility theory to compute the marginal value of information provided by alternative operators and selects the ones with the highest value. We have implemented and tested this control structure with several aerial image datasets. The results show that the knowledge base used by the system can be acquired using standard learning techniques and that the value-driven approach to the selection of vision algorithms leads to performance gains. Moreover, the modular system architecture simplifies the addition of both control knowledge and new vision algorithms.</abstract><cop>Los Alamitos CA</cop><pub>IEEE</pub><doi>10.1109/ICCV.1999.790421</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769501642 |
ispartof | Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, Vol.2, p.1229-1236 vol.2 |
issn | |
language | eng |
recordid | cdi_pascalfrancis_primary_1537007 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Artificial intelligence Bayesian methods Computational complexity Computer networks Computer science control theory systems Computer vision Control systems Exact sciences and technology High performance computing Image reconstruction Pattern recognition. Digital image processing. Computational geometry Testing Uncertainty Utility theory |
title | Control in a 3D reconstruction system using selective perception |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Control%20in%20a%203D%20reconstruction%20system%20using%20selective%20perception&rft.btitle=Proceedings%20of%20the%20Seventh%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Marengoni,%20M.&rft.date=1999&rft.volume=2&rft.spage=1229&rft.epage=1236%20vol.2&rft.pages=1229-1236%20vol.2&rft.isbn=9780769501642&rft.isbn_list=0769501648&rft_id=info:doi/10.1109/ICCV.1999.790421&rft_dat=%3Cpascalfrancis_6IE%3E1537007%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i116t-1ee805e0ce89f1982162e4f0e9a97053bd010fd85db200524ea7d2290ce6da463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=790421&rfr_iscdi=true |