Loading…

Mechanical effects of copper through-vias in a 3D die-stacked module

Mechanical effects of copper through-vias formed in silicon dies in a three dimensional module, in which four bare-dies with copper through-vias are vertically stacked and electrically connected through the copper-vias and metal bumps, were numerically and experimentally studied. To examine the mech...

Full description

Saved in:
Bibliographic Details
Main Authors: Tanaka, N., Sato, T., Yamaji, Y., Morifuji, T., Umemoto, M., Takahashi, K.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical effects of copper through-vias formed in silicon dies in a three dimensional module, in which four bare-dies with copper through-vias are vertically stacked and electrically connected through the copper-vias and metal bumps, were numerically and experimentally studied. To examine the mechanical effects caused by the existence of the copper through-vias in a rigid silicon-chip, a series of stress analyses, related simple mechanical tests, and reliability tests were carried out. All these results show that the copper through-via has unique effects on the stress distribution caused by thermal mismatch and on the interconnection reliability in the 3D die-stacked module. In particular, it was found that the developed micro copper through-via is reliable because the stress distribution due to thermal load is close to the hydrostatic pressure condition, and enhances chip-to-chip interconnection reliability because the copper-via restrains the plastic deformation of a gold bump during temperature cycling.
ISSN:0569-5503
2377-5726
DOI:10.1109/ECTC.2002.1008138