Loading…

Non-holonomic path planning using a quasi-random PRM approach

The aim of this article is to compare experimentally the use of quasi-random sampling techniques for nonholonomic path planning. The experiments are evaluated in the context of the probabilistic roadmap methods (PRM). Two quasi-random variants of PRM-based planners are proposed: (1) a classical PRM...

Full description

Saved in:
Bibliographic Details
Main Authors: Sanchez, A., Arenas, J.A., Zapata, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2310 vol.3
container_issue
container_start_page 2305
container_title
container_volume 3
creator Sanchez, A.
Arenas, J.A.
Zapata, R.
description The aim of this article is to compare experimentally the use of quasi-random sampling techniques for nonholonomic path planning. The experiments are evaluated in the context of the probabilistic roadmap methods (PRM). Two quasi-random variants of PRM-based planners are proposed: (1) a classical PRM with quasi-random sampling, and (2) a quasi-random lazy-PRM. Both have been implemented for car-like robots, and are shown through experimental results to offer some performance advantages in comparison to their randomized counterparts.
doi_str_mv 10.1109/IRDS.2002.1041611
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_15671966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1041611</ieee_id><sourcerecordid>15671966</sourcerecordid><originalsourceid>FETCH-LOGICAL-h171t-6ca3e9c2623e140ff05ab296054631ee43b0b785eb1e4c858c28d45a59e4b97c3</originalsourceid><addsrcrecordid>eNpFULlOw0AUXAkhASEfgGjcUNq85728BQUKV6RwKEAdPW_WeJGPxZsU_D1GRmKKmWJGo9EwdoaQIYK5XK5vXrMcIM8QBCrEA3YCugCuuSn0EZvH-AkjhJDcmGN29dR3ad03fde33iaBdnUSGuo6330k-_jLlHztKfp0oG7bt8nL-jGhEIaebH3KDitqopv_6Yy9392-LR7S1fP9cnG9SmvUuEuVJe6MzVXOHQqoKpBU5kaBFIqjc4KXUOpCuhKdsIUsbF5shSRpnCiNtnzGLqbeQNFSU41TrI-bMPiWhu8NSqXRKDXmzqecd87929MT_Ae3t1Kk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-holonomic path planning using a quasi-random PRM approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sanchez, A. ; Arenas, J.A. ; Zapata, R.</creator><creatorcontrib>Sanchez, A. ; Arenas, J.A. ; Zapata, R.</creatorcontrib><description>The aim of this article is to compare experimentally the use of quasi-random sampling techniques for nonholonomic path planning. The experiments are evaluated in the context of the probabilistic roadmap methods (PRM). Two quasi-random variants of PRM-based planners are proposed: (1) a classical PRM with quasi-random sampling, and (2) a quasi-random lazy-PRM. Both have been implemented for car-like robots, and are shown through experimental results to offer some performance advantages in comparison to their randomized counterparts.</description><identifier>ISBN: 0780373987</identifier><identifier>ISBN: 9780780373983</identifier><identifier>DOI: 10.1109/IRDS.2002.1041611</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Motion planning ; Orbital robotics ; Path planning ; Pattern recognition. Digital image processing. Computational geometry ; Programmable control ; Road accidents ; Robot sensing systems ; Robotics ; Robustness ; Sampling methods</subject><ispartof>IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, Vol.3, p.2305-2310 vol.3</ispartof><rights>2004 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1041611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1041611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15671966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, A.</creatorcontrib><creatorcontrib>Arenas, J.A.</creatorcontrib><creatorcontrib>Zapata, R.</creatorcontrib><title>Non-holonomic path planning using a quasi-random PRM approach</title><title>IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IRDS</addtitle><description>The aim of this article is to compare experimentally the use of quasi-random sampling techniques for nonholonomic path planning. The experiments are evaluated in the context of the probabilistic roadmap methods (PRM). Two quasi-random variants of PRM-based planners are proposed: (1) a classical PRM with quasi-random sampling, and (2) a quasi-random lazy-PRM. Both have been implemented for car-like robots, and are shown through experimental results to offer some performance advantages in comparison to their randomized counterparts.</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Motion planning</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Programmable control</subject><subject>Road accidents</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robustness</subject><subject>Sampling methods</subject><isbn>0780373987</isbn><isbn>9780780373983</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFULlOw0AUXAkhASEfgGjcUNq85728BQUKV6RwKEAdPW_WeJGPxZsU_D1GRmKKmWJGo9EwdoaQIYK5XK5vXrMcIM8QBCrEA3YCugCuuSn0EZvH-AkjhJDcmGN29dR3ad03fde33iaBdnUSGuo6330k-_jLlHztKfp0oG7bt8nL-jGhEIaebH3KDitqopv_6Yy9392-LR7S1fP9cnG9SmvUuEuVJe6MzVXOHQqoKpBU5kaBFIqjc4KXUOpCuhKdsIUsbF5shSRpnCiNtnzGLqbeQNFSU41TrI-bMPiWhu8NSqXRKDXmzqecd87929MT_Ae3t1Kk</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Sanchez, A.</creator><creator>Arenas, J.A.</creator><creator>Zapata, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Non-holonomic path planning using a quasi-random PRM approach</title><author>Sanchez, A. ; Arenas, J.A. ; Zapata, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h171t-6ca3e9c2623e140ff05ab296054631ee43b0b785eb1e4c858c28d45a59e4b97c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Motion planning</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Programmable control</topic><topic>Road accidents</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robustness</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, A.</creatorcontrib><creatorcontrib>Arenas, J.A.</creatorcontrib><creatorcontrib>Zapata, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanchez, A.</au><au>Arenas, J.A.</au><au>Zapata, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-holonomic path planning using a quasi-random PRM approach</atitle><btitle>IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IRDS</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>2305</spage><epage>2310 vol.3</epage><pages>2305-2310 vol.3</pages><isbn>0780373987</isbn><isbn>9780780373983</isbn><abstract>The aim of this article is to compare experimentally the use of quasi-random sampling techniques for nonholonomic path planning. The experiments are evaluated in the context of the probabilistic roadmap methods (PRM). Two quasi-random variants of PRM-based planners are proposed: (1) a classical PRM with quasi-random sampling, and (2) a quasi-random lazy-PRM. Both have been implemented for car-like robots, and are shown through experimental results to offer some performance advantages in comparison to their randomized counterparts.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IRDS.2002.1041611</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780373987
ispartof IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, Vol.3, p.2305-2310 vol.3
issn
language eng
recordid cdi_pascalfrancis_primary_15671966
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Applied sciences
Artificial intelligence
Computer science
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Motion planning
Orbital robotics
Path planning
Pattern recognition. Digital image processing. Computational geometry
Programmable control
Road accidents
Robot sensing systems
Robotics
Robustness
Sampling methods
title Non-holonomic path planning using a quasi-random PRM approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-holonomic%20path%20planning%20using%20a%20quasi-random%20PRM%20approach&rft.btitle=IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Sanchez,%20A.&rft.date=2002&rft.volume=3&rft.spage=2305&rft.epage=2310%20vol.3&rft.pages=2305-2310%20vol.3&rft.isbn=0780373987&rft.isbn_list=9780780373983&rft_id=info:doi/10.1109/IRDS.2002.1041611&rft_dat=%3Cpascalfrancis_6IE%3E15671966%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h171t-6ca3e9c2623e140ff05ab296054631ee43b0b785eb1e4c858c28d45a59e4b97c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1041611&rfr_iscdi=true