Loading…
Mode-Matching Strategies in Slowly Varying Engine Ducts
A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces...
Saved in:
Published in: | AIAA journal 2004-09, Vol.42 (9), p.1832-1840 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333 |
---|---|
cites | cdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333 |
container_end_page | 1840 |
container_issue | 9 |
container_start_page | 1832 |
container_title | AIAA journal |
container_volume | 42 |
creator | Ovenden, N. C Rienstra, S. W |
description | A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.3253 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16105009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>805348611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</originalsourceid><addsrcrecordid>eNptkFtLw0AQhRdRsFb9DUFRfEndSzbZPEqtF7D4UBXflml2t25Jk5rdoP33bmyhos7LMJyPMzMHoWOCB5ST5JIMGOVsB_UIZyxmgr_uoh7GmMQk4XQfHTg3DxPNBOmhbFwrHY_BF2-2mkUT34DXM6tdZKtoUtYf5Sp6gWbViaNqZisdXbeFd4doz0Dp9NGm99HzzehpeBc_PN7eD68eYkgw9bEwmcgLrXKupkakikKaZVoVBAsMfJoqrI3AmoMBomhKcQZsKjLOE5wLFqqPzte-y6Z-b7XzcmFdocsSKl23TlIRfsacBPDkFziv26YKt0naBZHy9Idb0dTONdrIZWMX4T1JsOzCk0R24QXwbOMGroDSNFAV1m3pNOzEOA_c6ZoDC7Dd-Mft4l_qW5VLZaRpy9LrT8--AGJahOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215336563</pqid></control><display><type>article</type><title>Mode-Matching Strategies in Slowly Varying Engine Ducts</title><source>Alma/SFX Local Collection</source><creator>Ovenden, N. C ; Rienstra, S. W</creator><creatorcontrib>Ovenden, N. C ; Rienstra, S. W</creatorcontrib><description>A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.3253</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Aircraft ; Airplane engines ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Linear acoustics ; Physics ; Turbulent flow ; Velocity</subject><ispartof>AIAA journal, 2004-09, Vol.42 (9), p.1832-1840</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</citedby><cites>FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16105009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovenden, N. C</creatorcontrib><creatorcontrib>Rienstra, S. W</creatorcontrib><title>Mode-Matching Strategies in Slowly Varying Engine Ducts</title><title>AIAA journal</title><description>A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aircraft</subject><subject>Airplane engines</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear acoustics</subject><subject>Physics</subject><subject>Turbulent flow</subject><subject>Velocity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkFtLw0AQhRdRsFb9DUFRfEndSzbZPEqtF7D4UBXflml2t25Jk5rdoP33bmyhos7LMJyPMzMHoWOCB5ST5JIMGOVsB_UIZyxmgr_uoh7GmMQk4XQfHTg3DxPNBOmhbFwrHY_BF2-2mkUT34DXM6tdZKtoUtYf5Sp6gWbViaNqZisdXbeFd4doz0Dp9NGm99HzzehpeBc_PN7eD68eYkgw9bEwmcgLrXKupkakikKaZVoVBAsMfJoqrI3AmoMBomhKcQZsKjLOE5wLFqqPzte-y6Z-b7XzcmFdocsSKl23TlIRfsacBPDkFziv26YKt0naBZHy9Idb0dTONdrIZWMX4T1JsOzCk0R24QXwbOMGroDSNFAV1m3pNOzEOA_c6ZoDC7Dd-Mft4l_qW5VLZaRpy9LrT8--AGJahOg</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Ovenden, N. C</creator><creator>Rienstra, S. W</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040901</creationdate><title>Mode-Matching Strategies in Slowly Varying Engine Ducts</title><author>Ovenden, N. C ; Rienstra, S. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aircraft</topic><topic>Airplane engines</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear acoustics</topic><topic>Physics</topic><topic>Turbulent flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovenden, N. C</creatorcontrib><creatorcontrib>Rienstra, S. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovenden, N. C</au><au>Rienstra, S. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode-Matching Strategies in Slowly Varying Engine Ducts</atitle><jtitle>AIAA journal</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>42</volume><issue>9</issue><spage>1832</spage><epage>1840</epage><pages>1832-1840</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.3253</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2004-09, Vol.42 (9), p.1832-1840 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_pascalfrancis_primary_16105009 |
source | Alma/SFX Local Collection |
subjects | Acoustics Aeroacoustics, atmospheric sound Aircraft Airplane engines Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Linear acoustics Physics Turbulent flow Velocity |
title | Mode-Matching Strategies in Slowly Varying Engine Ducts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode-Matching%20Strategies%20in%20Slowly%20Varying%20Engine%20Ducts&rft.jtitle=AIAA%20journal&rft.au=Ovenden,%20N.%20C&rft.date=2004-09-01&rft.volume=42&rft.issue=9&rft.spage=1832&rft.epage=1840&rft.pages=1832-1840&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.3253&rft_dat=%3Cproquest_pasca%3E805348611%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215336563&rft_id=info:pmid/&rfr_iscdi=true |