Loading…

Mode-Matching Strategies in Slowly Varying Engine Ducts

A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2004-09, Vol.42 (9), p.1832-1840
Main Authors: Ovenden, N. C, Rienstra, S. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333
cites cdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333
container_end_page 1840
container_issue 9
container_start_page 1832
container_title AIAA journal
container_volume 42
creator Ovenden, N. C
Rienstra, S. W
description A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.3253
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16105009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>805348611</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</originalsourceid><addsrcrecordid>eNptkFtLw0AQhRdRsFb9DUFRfEndSzbZPEqtF7D4UBXflml2t25Jk5rdoP33bmyhos7LMJyPMzMHoWOCB5ST5JIMGOVsB_UIZyxmgr_uoh7GmMQk4XQfHTg3DxPNBOmhbFwrHY_BF2-2mkUT34DXM6tdZKtoUtYf5Sp6gWbViaNqZisdXbeFd4doz0Dp9NGm99HzzehpeBc_PN7eD68eYkgw9bEwmcgLrXKupkakikKaZVoVBAsMfJoqrI3AmoMBomhKcQZsKjLOE5wLFqqPzte-y6Z-b7XzcmFdocsSKl23TlIRfsacBPDkFziv26YKt0naBZHy9Idb0dTONdrIZWMX4T1JsOzCk0R24QXwbOMGroDSNFAV1m3pNOzEOA_c6ZoDC7Dd-Mft4l_qW5VLZaRpy9LrT8--AGJahOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215336563</pqid></control><display><type>article</type><title>Mode-Matching Strategies in Slowly Varying Engine Ducts</title><source>Alma/SFX Local Collection</source><creator>Ovenden, N. C ; Rienstra, S. W</creator><creatorcontrib>Ovenden, N. C ; Rienstra, S. W</creatorcontrib><description>A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.3253</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Aircraft ; Airplane engines ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Linear acoustics ; Physics ; Turbulent flow ; Velocity</subject><ispartof>AIAA journal, 2004-09, Vol.42 (9), p.1832-1840</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</citedby><cites>FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16105009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovenden, N. C</creatorcontrib><creatorcontrib>Rienstra, S. W</creatorcontrib><title>Mode-Matching Strategies in Slowly Varying Engine Ducts</title><title>AIAA journal</title><description>A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aircraft</subject><subject>Airplane engines</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear acoustics</subject><subject>Physics</subject><subject>Turbulent flow</subject><subject>Velocity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkFtLw0AQhRdRsFb9DUFRfEndSzbZPEqtF7D4UBXflml2t25Jk5rdoP33bmyhos7LMJyPMzMHoWOCB5ST5JIMGOVsB_UIZyxmgr_uoh7GmMQk4XQfHTg3DxPNBOmhbFwrHY_BF2-2mkUT34DXM6tdZKtoUtYf5Sp6gWbViaNqZisdXbeFd4doz0Dp9NGm99HzzehpeBc_PN7eD68eYkgw9bEwmcgLrXKupkakikKaZVoVBAsMfJoqrI3AmoMBomhKcQZsKjLOE5wLFqqPzte-y6Z-b7XzcmFdocsSKl23TlIRfsacBPDkFziv26YKt0naBZHy9Idb0dTONdrIZWMX4T1JsOzCk0R24QXwbOMGroDSNFAV1m3pNOzEOA_c6ZoDC7Dd-Mft4l_qW5VLZaRpy9LrT8--AGJahOg</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Ovenden, N. C</creator><creator>Rienstra, S. W</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040901</creationdate><title>Mode-Matching Strategies in Slowly Varying Engine Ducts</title><author>Ovenden, N. C ; Rienstra, S. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aircraft</topic><topic>Airplane engines</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear acoustics</topic><topic>Physics</topic><topic>Turbulent flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovenden, N. C</creatorcontrib><creatorcontrib>Rienstra, S. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovenden, N. C</au><au>Rienstra, S. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode-Matching Strategies in Slowly Varying Engine Ducts</atitle><jtitle>AIAA journal</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>42</volume><issue>9</issue><spage>1832</spage><epage>1840</epage><pages>1832-1840</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>A matching method is proposed to connect the computational fluid dynamics (CFD) source region to the computational aeroacoustics propagation region of rotor-stator interaction sound produced in a turbofan engine. The method is based on a modal decomposition across three neighbouring axial interfaces adjacent to the matching interface. The modal amplitudes are determined by a least-squares fit. When slowly varying modes are taken, the interface may be positioned in a duct section of varying cross section. Furthermore, the spurious reflections back into the CFD domain, which result from imperfect reflection-free CFD boundary conditions, can be filtered out by including both left- and right-running modes in the matching. Although the method should be applicable to a wider range of acoustic models, it is implemented and favourably tested for the recently available relatively simple case of slowly varying modes in homentropic potential flow in lined ducts. Homentropic potential flow is a very relevant model for the inlet side and a good model for the bypass side if swirl or other types of vorticity are not dominant in the mean flow. By matching with density or pressure perturbations, any contamination of residual nonacoustical vorticity is avoided. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.3253</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2004-09, Vol.42 (9), p.1832-1840
issn 0001-1452
1533-385X
language eng
recordid cdi_pascalfrancis_primary_16105009
source Alma/SFX Local Collection
subjects Acoustics
Aeroacoustics, atmospheric sound
Aircraft
Airplane engines
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Linear acoustics
Physics
Turbulent flow
Velocity
title Mode-Matching Strategies in Slowly Varying Engine Ducts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode-Matching%20Strategies%20in%20Slowly%20Varying%20Engine%20Ducts&rft.jtitle=AIAA%20journal&rft.au=Ovenden,%20N.%20C&rft.date=2004-09-01&rft.volume=42&rft.issue=9&rft.spage=1832&rft.epage=1840&rft.pages=1832-1840&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.3253&rft_dat=%3Cproquest_pasca%3E805348611%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-8f789ced95dbf86d2a677edc1080a5b6d0ef80e5afa1d26207a3b875540983333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215336563&rft_id=info:pmid/&rfr_iscdi=true