Loading…

THERMAL ANALYSIS OF A COLD ROLLING PROCESS - A NUMERICAL APPROACH

The deformation of material and friction between the roll and deforming material contact region produce a large amount of heat. This heat energy is conducted toward the roll and the workpiece (strip). A well-designed cooling system is needed to control the material properties and grain structure of...

Full description

Saved in:
Bibliographic Details
Published in:Numerical heat transfer. Part A, Applications Applications, 2004-10, Vol.46 (6), p.613-632
Main Authors: Khan, Ovais U., Jamal, A., Arshed, G. M., Arif, A. F. M., Zubair, Syed M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deformation of material and friction between the roll and deforming material contact region produce a large amount of heat. This heat energy is conducted toward the roll and the workpiece (strip). A well-designed cooling system is needed to control the material properties and grain structure of the rolled product. Therefore, complete knowledge of the temperature distribution in both the roll and strip is necessary to design an efficient cooling system to control the material properties. In this work, both the roll and strip have been modeled as a coupled heat transfer problem to predict the temperature distribution. Using a finite-volume approach, the governing differential equations as well as the boundary conditions are discretized, which are then solved numerically to predict the temperature distributions. The stability of the solution was examined by changing the grid sizes in the bite region; in addition, the numerical results are validated against published work in the literature for certain special operating conditions. The impact of roll speed and heat transfer coefficient on the distribution of heat flow in both the roll and workpiece are demonstrated through the temperature contour plots.
ISSN:1040-7782
1521-0634
DOI:10.1080/10407780490487803