Loading…

Multivariable pi-sharing theory and its application on the Lur'e problem

The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coef...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1998-10, Vol.43 (10), p.1501-1505, Article 1501
Main Authors: HU, S.-C, FONG, I.-K, KUO, T.-S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223
cites cdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223
container_end_page 1505
container_issue 10
container_start_page 1501
container_title IEEE transactions on automatic control
container_volume 43
creator HU, S.-C
FONG, I.-K
KUO, T.-S
description The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.
doi_str_mv 10.1109/9.720518
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1642112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>720518</ieee_id><sourcerecordid>28937918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOKfg2VMPol4687NNjjLUCRMvei5fs9RFsrYmmbD_3swOBfEgBMLH97xPwovQKcETQrC6VpOSYkHkHhoRIWROBWX7aIQxkbmisjhERyG8pbHgnIzQ7HHtov0Ab6F2JuttHpZpaF-zuDSd32TQLjIbQwZ976yGaLs2Sydts_naX6aI71JydYwOGnDBnOzuMXq5u32ezvL50_3D9Gaea8ZEzBeCipooTXlTlqA15sxQJRgDKA1gQTmAKTQDaXTNeA0EKPBFo4FQoillY3QxeNO772sTYrWyQRvnoDXdOlRUKlYqIv8BskJivgWvBlD7LgRvmqr3dgV-UxFcbTutVDV0mtDznROCBtd4aLUNP3zBKSHbP05-GbWNX9VFD9b95T0bAtYY863bLT8BtDONLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28368048</pqid></control><display><type>article</type><title>Multivariable pi-sharing theory and its application on the Lur'e problem</title><source>IEEE Electronic Library (IEL) Journals</source><creator>HU, S.-C ; FONG, I.-K ; KUO, T.-S</creator><creatorcontrib>HU, S.-C ; FONG, I.-K ; KUO, T.-S</creatorcontrib><description>The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.720518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Feedback ; Linear matrix inequalities ; MIMO ; Nonlinear systems ; Stability analysis ; Symmetric matrices ; System theory</subject><ispartof>IEEE transactions on automatic control, 1998-10, Vol.43 (10), p.1501-1505, Article 1501</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</citedby><cites>FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/720518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1642112$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HU, S.-C</creatorcontrib><creatorcontrib>FONG, I.-K</creatorcontrib><creatorcontrib>KUO, T.-S</creatorcontrib><title>Multivariable pi-sharing theory and its application on the Lur'e problem</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Linear matrix inequalities</subject><subject>MIMO</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Symmetric matrices</subject><subject>System theory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOKfg2VMPol4687NNjjLUCRMvei5fs9RFsrYmmbD_3swOBfEgBMLH97xPwovQKcETQrC6VpOSYkHkHhoRIWROBWX7aIQxkbmisjhERyG8pbHgnIzQ7HHtov0Ab6F2JuttHpZpaF-zuDSd32TQLjIbQwZ976yGaLs2Sydts_naX6aI71JydYwOGnDBnOzuMXq5u32ezvL50_3D9Gaea8ZEzBeCipooTXlTlqA15sxQJRgDKA1gQTmAKTQDaXTNeA0EKPBFo4FQoillY3QxeNO772sTYrWyQRvnoDXdOlRUKlYqIv8BskJivgWvBlD7LgRvmqr3dgV-UxFcbTutVDV0mtDznROCBtd4aLUNP3zBKSHbP05-GbWNX9VFD9b95T0bAtYY863bLT8BtDONLA</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>HU, S.-C</creator><creator>FONG, I.-K</creator><creator>KUO, T.-S</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19981001</creationdate><title>Multivariable pi-sharing theory and its application on the Lur'e problem</title><author>HU, S.-C ; FONG, I.-K ; KUO, T.-S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Linear matrix inequalities</topic><topic>MIMO</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Symmetric matrices</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU, S.-C</creatorcontrib><creatorcontrib>FONG, I.-K</creatorcontrib><creatorcontrib>KUO, T.-S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU, S.-C</au><au>FONG, I.-K</au><au>KUO, T.-S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariable pi-sharing theory and its application on the Lur'e problem</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>43</volume><issue>10</issue><spage>1501</spage><epage>1505</epage><pages>1501-1505</pages><artnum>1501</artnum><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.720518</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1998-10, Vol.43 (10), p.1501-1505, Article 1501
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_1642112
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Feedback
Linear matrix inequalities
MIMO
Nonlinear systems
Stability analysis
Symmetric matrices
System theory
title Multivariable pi-sharing theory and its application on the Lur'e problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariable%20pi-sharing%20theory%20and%20its%20application%20on%20the%20Lur'e%20problem&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=HU,%20S.-C&rft.date=1998-10-01&rft.volume=43&rft.issue=10&rft.spage=1501&rft.epage=1505&rft.pages=1501-1505&rft.artnum=1501&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.720518&rft_dat=%3Cproquest_pasca%3E28937918%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28368048&rft_id=info:pmid/&rft_ieee_id=720518&rfr_iscdi=true