Loading…
Multivariable pi-sharing theory and its application on the Lur'e problem
The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coef...
Saved in:
Published in: | IEEE transactions on automatic control 1998-10, Vol.43 (10), p.1501-1505, Article 1501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223 |
container_end_page | 1505 |
container_issue | 10 |
container_start_page | 1501 |
container_title | IEEE transactions on automatic control |
container_volume | 43 |
creator | HU, S.-C FONG, I.-K KUO, T.-S |
description | The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions. |
doi_str_mv | 10.1109/9.720518 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1642112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>720518</ieee_id><sourcerecordid>28937918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOKfg2VMPol4687NNjjLUCRMvei5fs9RFsrYmmbD_3swOBfEgBMLH97xPwovQKcETQrC6VpOSYkHkHhoRIWROBWX7aIQxkbmisjhERyG8pbHgnIzQ7HHtov0Ab6F2JuttHpZpaF-zuDSd32TQLjIbQwZ976yGaLs2Sydts_naX6aI71JydYwOGnDBnOzuMXq5u32ezvL50_3D9Gaea8ZEzBeCipooTXlTlqA15sxQJRgDKA1gQTmAKTQDaXTNeA0EKPBFo4FQoillY3QxeNO772sTYrWyQRvnoDXdOlRUKlYqIv8BskJivgWvBlD7LgRvmqr3dgV-UxFcbTutVDV0mtDznROCBtd4aLUNP3zBKSHbP05-GbWNX9VFD9b95T0bAtYY863bLT8BtDONLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28368048</pqid></control><display><type>article</type><title>Multivariable pi-sharing theory and its application on the Lur'e problem</title><source>IEEE Electronic Library (IEL) Journals</source><creator>HU, S.-C ; FONG, I.-K ; KUO, T.-S</creator><creatorcontrib>HU, S.-C ; FONG, I.-K ; KUO, T.-S</creatorcontrib><description>The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.720518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Feedback ; Linear matrix inequalities ; MIMO ; Nonlinear systems ; Stability analysis ; Symmetric matrices ; System theory</subject><ispartof>IEEE transactions on automatic control, 1998-10, Vol.43 (10), p.1501-1505, Article 1501</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</citedby><cites>FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/720518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1642112$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HU, S.-C</creatorcontrib><creatorcontrib>FONG, I.-K</creatorcontrib><creatorcontrib>KUO, T.-S</creatorcontrib><title>Multivariable pi-sharing theory and its application on the Lur'e problem</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Linear matrix inequalities</subject><subject>MIMO</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Symmetric matrices</subject><subject>System theory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOKfg2VMPol4687NNjjLUCRMvei5fs9RFsrYmmbD_3swOBfEgBMLH97xPwovQKcETQrC6VpOSYkHkHhoRIWROBWX7aIQxkbmisjhERyG8pbHgnIzQ7HHtov0Ab6F2JuttHpZpaF-zuDSd32TQLjIbQwZ976yGaLs2Sydts_naX6aI71JydYwOGnDBnOzuMXq5u32ezvL50_3D9Gaea8ZEzBeCipooTXlTlqA15sxQJRgDKA1gQTmAKTQDaXTNeA0EKPBFo4FQoillY3QxeNO772sTYrWyQRvnoDXdOlRUKlYqIv8BskJivgWvBlD7LgRvmqr3dgV-UxFcbTutVDV0mtDznROCBtd4aLUNP3zBKSHbP05-GbWNX9VFD9b95T0bAtYY863bLT8BtDONLA</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>HU, S.-C</creator><creator>FONG, I.-K</creator><creator>KUO, T.-S</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19981001</creationdate><title>Multivariable pi-sharing theory and its application on the Lur'e problem</title><author>HU, S.-C ; FONG, I.-K ; KUO, T.-S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Linear matrix inequalities</topic><topic>MIMO</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Symmetric matrices</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU, S.-C</creatorcontrib><creatorcontrib>FONG, I.-K</creatorcontrib><creatorcontrib>KUO, T.-S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU, S.-C</au><au>FONG, I.-K</au><au>KUO, T.-S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariable pi-sharing theory and its application on the Lur'e problem</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>43</volume><issue>10</issue><spage>1501</spage><epage>1505</epage><pages>1501-1505</pages><artnum>1501</artnum><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The pi-sharing theory developed by Lawrence and Johnson (1986) is extended to handle square multivariable continuous-time systems, and for the most essential part of finding usable pi-coefficients, LMI formulations are utilized such that for any finite-dimensional LTI systems, time-invariant pi-coefficients can be obtained easily. Furthermore, pi-coefficients are derived for sector-bounded nonlinearities, and the extended pi-sharing theory is applied to the multivariable Lur'e problem. With this approach, not only can a Lur'e system with known sector bounds on nonlinearities be checked for stability, but also the maximal bounds ensuring stability can be found under some conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.720518</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1998-10, Vol.43 (10), p.1501-1505, Article 1501 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_1642112 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Exact sciences and technology Feedback Linear matrix inequalities MIMO Nonlinear systems Stability analysis Symmetric matrices System theory |
title | Multivariable pi-sharing theory and its application on the Lur'e problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariable%20pi-sharing%20theory%20and%20its%20application%20on%20the%20Lur'e%20problem&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=HU,%20S.-C&rft.date=1998-10-01&rft.volume=43&rft.issue=10&rft.spage=1501&rft.epage=1505&rft.pages=1501-1505&rft.artnum=1501&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.720518&rft_dat=%3Cproquest_pasca%3E28937918%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-d525b19c24f77acc043e29533aa7ea0524aae6c3a8ecb34ba1a2a4dfca121c223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28368048&rft_id=info:pmid/&rft_ieee_id=720518&rfr_iscdi=true |