Loading…
A 1.6-Gb/s/pin double data rate SDRAM with wave-pipelined CAS latency control
An 8 M /spl times/ 32 GDDR (graphic DDR) SDRAM operating up to 800-MHz clock (CLK) frequency is described. The GDDR SDRAM demands an effective control of CAS latency due to the large and wide number of CAS latencies at the CLK frequency. A wave-pipelined CAS latency control circuit is proposed to pr...
Saved in:
Published in: | IEEE journal of solid-state circuits 2005-01, Vol.40 (1), p.223-232 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An 8 M /spl times/ 32 GDDR (graphic DDR) SDRAM operating up to 800-MHz clock (CLK) frequency is described. The GDDR SDRAM demands an effective control of CAS latency due to the large and wide number of CAS latencies at the CLK frequency. A wave-pipelined CAS latency control circuit is proposed to provide stable operation for the large and wide number of CAS latencies. The increase of CAS latency also causes a degradation of data bus efficiency at high-speed operation due to the large gap between input data (DINs) and output data (DOUTs) at the operation of write followed by read. A gapless write to read scheme improves the data bus efficiency by separating write data-path from read data-path for different banks accesses. Partial array activation commands can reduce the peak current, preventing the reduction of the data retention time of DRAM cells at high-speed operation. The GDDR SDRAM operates successfully at the CLK frequency of 800 MHz at 2.1 V and 700 MHz at 1.8 V, respectively. The power consumption is measured to be /spl sim/2 W at 1.9 V. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2004.837983 |