Loading…

Dynamic contrast-based quantization for lossy wavelet image compression

This paper presents a contrast-based quantization strategy for use in lossy wavelet image compression that attempts to preserve visual quality at any bit rate. Based on the results of recent psychophysical experiments using near-threshold and suprathreshold wavelet subband quantization distortions p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2005-04, Vol.14 (4), p.397-410
Main Authors: Chandler, D.M., Hemami, S.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663
cites cdi_FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663
container_end_page 410
container_issue 4
container_start_page 397
container_title IEEE transactions on image processing
container_volume 14
creator Chandler, D.M.
Hemami, S.S.
description This paper presents a contrast-based quantization strategy for use in lossy wavelet image compression that attempts to preserve visual quality at any bit rate. Based on the results of recent psychophysical experiments using near-threshold and suprathreshold wavelet subband quantization distortions presented against natural-image backgrounds, subbands are quantized such that the distortions in the reconstructed image exhibit root-mean-squared contrasts selected based on image, subband, and display characteristics and on a measure of total visual distortion so as to preserve the visual system's ability to integrate edge structure across scale space. Within a single, unified framework, the proposed contrast-based strategy yields images which are competitive in visual quality with results from current visually lossless approaches at high bit rates and which demonstrate improved visual quality over current visually lossy approaches at low bit rates. This strategy operates in the context of both nonembedded and embedded quantization, the latter of which yields a highly scalable codestream which attempts to maintain visual quality at all bit rates; a specific application of the proposed algorithm to JPEG-2000 is presented.
doi_str_mv 10.1109/TIP.2004.841196
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16610010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1407970</ieee_id><sourcerecordid>28017398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663</originalsourceid><addsrcrecordid>eNqFkctr3DAQh0VpaB7tuYdAMYH05s2MJetxLJtHA4HkkJ6FrB0FBz82kp2y_eurZBcWeulJQvpmRvp9jH1FWCCCuXi8fVhUAGKhBaKRH9gRGoFlPqk-5j3UqlQozCE7TukZAEWN8hM7xFpXtVDyiN1cbgbXt77w4zBFl6aycYlWxcvshqn946Z2HIowxqIbU9oUv90rdTQVbe-eKNf060gpZeYzOwiuS_Rlt56wX9dXj8uf5d39ze3yx13pBfCplIHXK9B1MBQq3hitSSkvdUVEnvP8KO8IQnCNgEZ4kgp51RiDpHUDUvIT9n3bdx3Hl5nSZPs2eeo6N9A4JyuV4gA1_hesNKDiRmfw7B_weZzjkD9hteYCTP0-9mIL-ZhziBTsOuYM4sYi2DcTNpuwbybs1kSu-LZrOzc9rfb8LvoMnO8Al7zrQnSDb9OekxKzMMjc6ZZrc0b7awHKKOB_AbgKmQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883409566</pqid></control><display><type>article</type><title>Dynamic contrast-based quantization for lossy wavelet image compression</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chandler, D.M. ; Hemami, S.S.</creator><creatorcontrib>Chandler, D.M. ; Hemami, S.S.</creatorcontrib><description>This paper presents a contrast-based quantization strategy for use in lossy wavelet image compression that attempts to preserve visual quality at any bit rate. Based on the results of recent psychophysical experiments using near-threshold and suprathreshold wavelet subband quantization distortions presented against natural-image backgrounds, subbands are quantized such that the distortions in the reconstructed image exhibit root-mean-squared contrasts selected based on image, subband, and display characteristics and on a measure of total visual distortion so as to preserve the visual system's ability to integrate edge structure across scale space. Within a single, unified framework, the proposed contrast-based strategy yields images which are competitive in visual quality with results from current visually lossless approaches at high bit rates and which demonstrate improved visual quality over current visually lossy approaches at low bit rates. This strategy operates in the context of both nonembedded and embedded quantization, the latter of which yields a highly scalable codestream which attempts to maintain visual quality at all bit rates; a specific application of the proposed algorithm to JPEG-2000 is presented.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2004.841196</identifier><identifier>PMID: 15825476</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bit rate ; Computer Graphics ; contrast ; Data Compression - methods ; Detection, estimation, filtering, equalization, prediction ; Discrete wavelet transforms ; Displays ; Distortion measurement ; Exact sciences and technology ; Extraterrestrial measurements ; Human visual system (HVS) ; Image coding ; image compression ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Information, signal and communications theory ; JPEG-2000 ; Multimedia ; Numerical Analysis, Computer-Assisted ; Pattern Recognition, Automated - methods ; Psychology ; Quantization ; Reproducibility of Results ; Sampling, quantization ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal, noise ; Telecommunications and information theory ; Visual system ; wavelet</subject><ispartof>IEEE transactions on image processing, 2005-04, Vol.14 (4), p.397-410</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663</citedby><cites>FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1407970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16610010$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15825476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandler, D.M.</creatorcontrib><creatorcontrib>Hemami, S.S.</creatorcontrib><title>Dynamic contrast-based quantization for lossy wavelet image compression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents a contrast-based quantization strategy for use in lossy wavelet image compression that attempts to preserve visual quality at any bit rate. Based on the results of recent psychophysical experiments using near-threshold and suprathreshold wavelet subband quantization distortions presented against natural-image backgrounds, subbands are quantized such that the distortions in the reconstructed image exhibit root-mean-squared contrasts selected based on image, subband, and display characteristics and on a measure of total visual distortion so as to preserve the visual system's ability to integrate edge structure across scale space. Within a single, unified framework, the proposed contrast-based strategy yields images which are competitive in visual quality with results from current visually lossless approaches at high bit rates and which demonstrate improved visual quality over current visually lossy approaches at low bit rates. This strategy operates in the context of both nonembedded and embedded quantization, the latter of which yields a highly scalable codestream which attempts to maintain visual quality at all bit rates; a specific application of the proposed algorithm to JPEG-2000 is presented.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bit rate</subject><subject>Computer Graphics</subject><subject>contrast</subject><subject>Data Compression - methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete wavelet transforms</subject><subject>Displays</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Human visual system (HVS)</subject><subject>Image coding</subject><subject>image compression</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information, signal and communications theory</subject><subject>JPEG-2000</subject><subject>Multimedia</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Psychology</subject><subject>Quantization</subject><subject>Reproducibility of Results</subject><subject>Sampling, quantization</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Visual system</subject><subject>wavelet</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkctr3DAQh0VpaB7tuYdAMYH05s2MJetxLJtHA4HkkJ6FrB0FBz82kp2y_eurZBcWeulJQvpmRvp9jH1FWCCCuXi8fVhUAGKhBaKRH9gRGoFlPqk-5j3UqlQozCE7TukZAEWN8hM7xFpXtVDyiN1cbgbXt77w4zBFl6aycYlWxcvshqn946Z2HIowxqIbU9oUv90rdTQVbe-eKNf060gpZeYzOwiuS_Rlt56wX9dXj8uf5d39ze3yx13pBfCplIHXK9B1MBQq3hitSSkvdUVEnvP8KO8IQnCNgEZ4kgp51RiDpHUDUvIT9n3bdx3Hl5nSZPs2eeo6N9A4JyuV4gA1_hesNKDiRmfw7B_weZzjkD9hteYCTP0-9mIL-ZhziBTsOuYM4sYi2DcTNpuwbybs1kSu-LZrOzc9rfb8LvoMnO8Al7zrQnSDb9OekxKzMMjc6ZZrc0b7awHKKOB_AbgKmQc</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Chandler, D.M.</creator><creator>Hemami, S.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20050401</creationdate><title>Dynamic contrast-based quantization for lossy wavelet image compression</title><author>Chandler, D.M. ; Hemami, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bit rate</topic><topic>Computer Graphics</topic><topic>contrast</topic><topic>Data Compression - methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete wavelet transforms</topic><topic>Displays</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Human visual system (HVS)</topic><topic>Image coding</topic><topic>image compression</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information, signal and communications theory</topic><topic>JPEG-2000</topic><topic>Multimedia</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Psychology</topic><topic>Quantization</topic><topic>Reproducibility of Results</topic><topic>Sampling, quantization</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Visual system</topic><topic>wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandler, D.M.</creatorcontrib><creatorcontrib>Hemami, S.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandler, D.M.</au><au>Hemami, S.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic contrast-based quantization for lossy wavelet image compression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>4</issue><spage>397</spage><epage>410</epage><pages>397-410</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents a contrast-based quantization strategy for use in lossy wavelet image compression that attempts to preserve visual quality at any bit rate. Based on the results of recent psychophysical experiments using near-threshold and suprathreshold wavelet subband quantization distortions presented against natural-image backgrounds, subbands are quantized such that the distortions in the reconstructed image exhibit root-mean-squared contrasts selected based on image, subband, and display characteristics and on a measure of total visual distortion so as to preserve the visual system's ability to integrate edge structure across scale space. Within a single, unified framework, the proposed contrast-based strategy yields images which are competitive in visual quality with results from current visually lossless approaches at high bit rates and which demonstrate improved visual quality over current visually lossy approaches at low bit rates. This strategy operates in the context of both nonembedded and embedded quantization, the latter of which yields a highly scalable codestream which attempts to maintain visual quality at all bit rates; a specific application of the proposed algorithm to JPEG-2000 is presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15825476</pmid><doi>10.1109/TIP.2004.841196</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2005-04, Vol.14 (4), p.397-410
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_16610010
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Artificial Intelligence
Bit rate
Computer Graphics
contrast
Data Compression - methods
Detection, estimation, filtering, equalization, prediction
Discrete wavelet transforms
Displays
Distortion measurement
Exact sciences and technology
Extraterrestrial measurements
Human visual system (HVS)
Image coding
image compression
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Information, signal and communications theory
JPEG-2000
Multimedia
Numerical Analysis, Computer-Assisted
Pattern Recognition, Automated - methods
Psychology
Quantization
Reproducibility of Results
Sampling, quantization
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
Telecommunications and information theory
Visual system
wavelet
title Dynamic contrast-based quantization for lossy wavelet image compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20contrast-based%20quantization%20for%20lossy%20wavelet%20image%20compression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chandler,%20D.M.&rft.date=2005-04-01&rft.volume=14&rft.issue=4&rft.spage=397&rft.epage=410&rft.pages=397-410&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2004.841196&rft_dat=%3Cproquest_pasca%3E28017398%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-6f35d085f9ef23b988e77c682eeec33254cae0ffab40b4ce67132b991e88b0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883409566&rft_id=info:pmid/15825476&rft_ieee_id=1407970&rfr_iscdi=true