Loading…
Capacity of MIMO systems with antenna selection
We consider the capacity of multiple-input multiple-output systems with reduced complexity. One link-end uses all available antennas, while the other chooses the L out of N antennas that maximize capacity. We derive an upper bound on the capacity that can be expressed as the sum of the logarithms of...
Saved in:
Published in: | IEEE transactions on wireless communications 2005-07, Vol.4 (4), p.1759-1772 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the capacity of multiple-input multiple-output systems with reduced complexity. One link-end uses all available antennas, while the other chooses the L out of N antennas that maximize capacity. We derive an upper bound on the capacity that can be expressed as the sum of the logarithms of ordered chi-square-distributed variables. This bound is then evaluated analytically and compared to the results obtained by Monte Carlo simulations. Our results show that the achieved capacity is close to the capacity of a full-complexity system provided that L is at least as large as the number of antennas at the other link-end. For example, for L = 3, N = 8 antennas at the receiver and three antennas at the transmitter, the capacity of the reduced-complexity scheme is 20 bits/s/Hz compared to 23 bits/s/Hz of a full-complexity scheme. We also present a suboptimum antenna subset selection algorithm that has a complexity of N/sup 2/ compared to the optimum algorithm with a complexity of (N/sub L/). |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2005.850307 |