Loading…
Physical insights regarding design and performance of independent-gate FinFETs
Important physical insights regarding the design and performance of independent-gate FinFETs, e.g., the MIGFET , are gained from measured data and predictions from our process/physics-based double-gate (DG) MOSFET model (UFDG) in Spice3. Inversion charge-centroid shifting, modulated by gate biases a...
Saved in:
Published in: | IEEE transactions on electron devices 2005-10, Vol.52 (10), p.2198-2206 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Important physical insights regarding the design and performance of independent-gate FinFETs, e.g., the MIGFET , are gained from measured data and predictions from our process/physics-based double-gate (DG) MOSFET model (UFDG) in Spice3. Inversion charge-centroid shifting, modulated by gate biases as well as by quantum-confinement and short-channel effects, underlies the sensitivity of the MIGFET (front-gate) threshold voltage to the back-gate bias. MIGFET design and operation-mode options are examined for optimizing circuit applications. Further, novel design of a single-device RF mixer and a double-balanced counterpart using MIGFETs is studied with UFDG/Spice3. Reasonably good MIGFET mixers, with regard to conversion gain and linearity with small-size/low-voltage/low-power requirements, can be achieved with optimal biases on the two gates and good design of the MIGFET structure. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2005.856184 |