Loading…

Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions

The oxidation of isoprene (2‐methyl‐1,3‐butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2005-09, Vol.32 (18), p.L18808.1-n/a
Main Authors: Kroll, Jesse H., Ng, Nga L., Murphy, Shane M., Flagan, Richard C., Seinfeld, John H.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 18
container_start_page L18808.1
container_title Geophysical research letters
container_volume 32
creator Kroll, Jesse H.
Ng, Nga L.
Murphy, Shane M.
Flagan, Richard C.
Seinfeld, John H.
description The oxidation of isoprene (2‐methyl‐1,3‐butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under high‐NOx conditions, at significantly lower isoprene concentrations than had been observed previously. Mass yields are low (0.9–3.0%), but because of large emissions, isoprene photooxidation may still contribute substantially to global SOA production. Results from photooxidation experiments of compounds structurally similar to isoprene (1,3‐butadiene and 2‐ and 3‐methyl‐1‐butene) suggest that SOA formation from isoprene oxidation proceeds from the further reaction of first‐generation oxidation products (i.e., the oxidative attack of both double bonds). The gas‐phase chemistry of such oxidation products is in general poorly characterized and warrants further study.
doi_str_mv 10.1029/2005GL023637
format article
fullrecord <record><control><sourceid>wiley_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17223026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GRL20228</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3708-1d887e5b17aa230c705551df5c28450936133ed5ff84eac71d2704c58b4965b73</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKdv_oC8-Fi9SZomfZRNq1Cm6ETwJWRpukW7piQTt39vR0V9ugfOOR_cg9A5gUsCNL-iALwogbKMiQM0InmaJhJAHKIRQN5rKrJjdBLjOwAwYGSE3p6t8W2lww77sNStM1jb4KNvcO3DWm-cb3Ed_Bq76LtgW4u7ld94v3XVYH62lQ145ZarZPawxXua2xvxFB3Vuon27OeO0cvtzXxyl5QPxf3kukwcEyATUkkpLF8QoTVlYARwzklVc0NlyiFnGWHMVryuZWq1EaSiAlLD5SLNM74QbIwuBm6no9FNHXRrXFRdcOv-LUUE7bE063N0yH25xu7-fFD78dT_8VTxVFKgVPalZCi5uLHb35IOHyoTTHD1OivU44Sx6ZQLNWffIrhyuQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Kroll, Jesse H. ; Ng, Nga L. ; Murphy, Shane M. ; Flagan, Richard C. ; Seinfeld, John H.</creator><creatorcontrib>Kroll, Jesse H. ; Ng, Nga L. ; Murphy, Shane M. ; Flagan, Richard C. ; Seinfeld, John H.</creatorcontrib><description>The oxidation of isoprene (2‐methyl‐1,3‐butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under high‐NOx conditions, at significantly lower isoprene concentrations than had been observed previously. Mass yields are low (0.9–3.0%), but because of large emissions, isoprene photooxidation may still contribute substantially to global SOA production. Results from photooxidation experiments of compounds structurally similar to isoprene (1,3‐butadiene and 2‐ and 3‐methyl‐1‐butene) suggest that SOA formation from isoprene oxidation proceeds from the further reaction of first‐generation oxidation products (i.e., the oxidative attack of both double bonds). The gas‐phase chemistry of such oxidation products is in general poorly characterized and warrants further study.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2005GL023637</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>Geophysical research letters, 2005-09, Vol.32 (18), p.L18808.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005GL023637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005GL023637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17223026$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kroll, Jesse H.</creatorcontrib><creatorcontrib>Ng, Nga L.</creatorcontrib><creatorcontrib>Murphy, Shane M.</creatorcontrib><creatorcontrib>Flagan, Richard C.</creatorcontrib><creatorcontrib>Seinfeld, John H.</creatorcontrib><title>Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The oxidation of isoprene (2‐methyl‐1,3‐butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under high‐NOx conditions, at significantly lower isoprene concentrations than had been observed previously. Mass yields are low (0.9–3.0%), but because of large emissions, isoprene photooxidation may still contribute substantially to global SOA production. Results from photooxidation experiments of compounds structurally similar to isoprene (1,3‐butadiene and 2‐ and 3‐methyl‐1‐butene) suggest that SOA formation from isoprene oxidation proceeds from the further reaction of first‐generation oxidation products (i.e., the oxidative attack of both double bonds). The gas‐phase chemistry of such oxidation products is in general poorly characterized and warrants further study.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOKdv_oC8-Fi9SZomfZRNq1Cm6ETwJWRpukW7piQTt39vR0V9ugfOOR_cg9A5gUsCNL-iALwogbKMiQM0InmaJhJAHKIRQN5rKrJjdBLjOwAwYGSE3p6t8W2lww77sNStM1jb4KNvcO3DWm-cb3Ed_Bq76LtgW4u7ld94v3XVYH62lQ145ZarZPawxXua2xvxFB3Vuon27OeO0cvtzXxyl5QPxf3kukwcEyATUkkpLF8QoTVlYARwzklVc0NlyiFnGWHMVryuZWq1EaSiAlLD5SLNM74QbIwuBm6no9FNHXRrXFRdcOv-LUUE7bE063N0yH25xu7-fFD78dT_8VTxVFKgVPalZCi5uLHb35IOHyoTTHD1OivU44Sx6ZQLNWffIrhyuQ</recordid><startdate>20050928</startdate><enddate>20050928</enddate><creator>Kroll, Jesse H.</creator><creator>Ng, Nga L.</creator><creator>Murphy, Shane M.</creator><creator>Flagan, Richard C.</creator><creator>Seinfeld, John H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>20050928</creationdate><title>Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions</title><author>Kroll, Jesse H. ; Ng, Nga L. ; Murphy, Shane M. ; Flagan, Richard C. ; Seinfeld, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3708-1d887e5b17aa230c705551df5c28450936133ed5ff84eac71d2704c58b4965b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroll, Jesse H.</creatorcontrib><creatorcontrib>Ng, Nga L.</creatorcontrib><creatorcontrib>Murphy, Shane M.</creatorcontrib><creatorcontrib>Flagan, Richard C.</creatorcontrib><creatorcontrib>Seinfeld, John H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroll, Jesse H.</au><au>Ng, Nga L.</au><au>Murphy, Shane M.</au><au>Flagan, Richard C.</au><au>Seinfeld, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2005-09-28</date><risdate>2005</risdate><volume>32</volume><issue>18</issue><spage>L18808.1</spage><epage>n/a</epage><pages>L18808.1-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The oxidation of isoprene (2‐methyl‐1,3‐butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under high‐NOx conditions, at significantly lower isoprene concentrations than had been observed previously. Mass yields are low (0.9–3.0%), but because of large emissions, isoprene photooxidation may still contribute substantially to global SOA production. Results from photooxidation experiments of compounds structurally similar to isoprene (1,3‐butadiene and 2‐ and 3‐methyl‐1‐butene) suggest that SOA formation from isoprene oxidation proceeds from the further reaction of first‐generation oxidation products (i.e., the oxidative attack of both double bonds). The gas‐phase chemistry of such oxidation products is in general poorly characterized and warrants further study.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005GL023637</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2005-09, Vol.32 (18), p.L18808.1-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_pascalfrancis_primary_17223026
source Wiley-Blackwell AGU Digital Library
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
title Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20organic%20aerosol%20formation%20from%20isoprene%20photooxidation%20under%20high-NOx%20conditions&rft.jtitle=Geophysical%20research%20letters&rft.au=Kroll,%20Jesse%20H.&rft.date=2005-09-28&rft.volume=32&rft.issue=18&rft.spage=L18808.1&rft.epage=n/a&rft.pages=L18808.1-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2005GL023637&rft_dat=%3Cwiley_pasca%3EGRL20228%3C/wiley_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i3708-1d887e5b17aa230c705551df5c28450936133ed5ff84eac71d2704c58b4965b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true