Loading…

Cytochrome P450 homolog is responsible for C-N bond formation between aglycone and deoxysugar in the staurosporine biosynthesis of Streptomyces sp. TP-A0274

The staurosporine biosynthetic gene cluster in Streptomyces sp. TP-A0274 consists of 15 sta genes. In the cluster, it was predicted that staN, which shows high similarity to cytochrome P450 is involved in C-N bond formation between the nitrogen at N-12 of aglycone and the carbon at C-5' of deox...

Full description

Saved in:
Bibliographic Details
Published in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2005-09, Vol.69 (9), p.1753-1759
Main Authors: Onaka, H.(Toyama Prefectural Univ., Kosugi (Japan). Faculty of Engineering), Asamizu, S, Igarashi, Y, Yoshida, R, Furumai, T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The staurosporine biosynthetic gene cluster in Streptomyces sp. TP-A0274 consists of 15 sta genes. In the cluster, it was predicted that staN, which shows high similarity to cytochrome P450 is involved in C-N bond formation between the nitrogen at N-12 of aglycone and the carbon at C-5' of deoxysugar. The staN disruptant produced holyrine A instead of staurosporine. The structure of holyrine A is aglycone linking to 2,3,6-trideoxy-3-aminoaldohexose between N-13 and C-1' of deoxysugar. Holyrine A was converted to staurosporine by the staD disruptant. These results indicate that StaN, cytochrome P450 is responsible for C-N bond formation. This is the first example of C-N bond formation catalyzed by cytochrome P450. In addition, holyrine A was confirmed to be an intermediate of staurosporine biosynthesis, which suggests that the N- and O-methylation at C-3' and C-4' takes place after the formation of the C-N bond between C-5' and N-12 in the biosynthetic pathway.
ISSN:0916-8451
1347-6947
DOI:10.1271/bbb.69.1753