Loading…

Fully compliant tensural bistable micromechanisms (FTBM)

A new class of bistable mechanisms, the fully compliant tensural bistable micromechanism (FTBM) class, is introduced. The class consists of linear bistable micromechanisms that undergo tension loads, in addition to the bending loads present, through their range of motion. Proof-of-concept designs fa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2005-12, Vol.14 (6), p.1223-1235
Main Authors: Wilcox, D.L., Howell, L.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603
cites cdi_FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603
container_end_page 1235
container_issue 6
container_start_page 1223
container_title Journal of microelectromechanical systems
container_volume 14
creator Wilcox, D.L.
Howell, L.L.
description A new class of bistable mechanisms, the fully compliant tensural bistable micromechanism (FTBM) class, is introduced. The class consists of linear bistable micromechanisms that undergo tension loads, in addition to the bending loads present, through their range of motion. Proof-of-concept designs fabricated in two different microelectromechanical systems (MEMS) surface micromachining processes were demonstrated. Three sets of refined designs within the FTBM class were designed using optimization methods linked with nonlinear finite element analysis (FEA), then fabricated and tested. Measured force and displacement performance are compared to values obtained by FEA. On-chip actuation of the bistable mechanisms was achieved using thermomechanical in-plane microactuators (TIMs). The FTBM class of bistable mechanisms explores a relatively new design space for fully compliant micromechanisms, and mechanisms from this class have promise in such applications as micro shutter positioning, microvalves, and electrical microrelays. [1448].
doi_str_mv 10.1109/JMEMS.2005.859089
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17334142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1549857</ieee_id><sourcerecordid>1019654648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMoOKd_gHgpgjIPnXmbjyZHHZsfbHhwnkuappiRtrNpD_vvzexA8OAlCW9-z8P7PAhdAp4CYHn_upqv3qcJxmwqmMRCHqERSAoxBiaOwxuzNE6BpafozPsNxkCp4CMkFr1zu0g31dZZVXdRZ2rft8pFufWdyp2JKqvbpjL6U9XWVz6aLNaPq7tzdFIq583F4R6jj8V8PXuOl29PL7OHZayJ4F2sEqAEFwpESTUwJVhehF0ESbQJR8E5AZFLGSZ5mVOQ0iSF1GVKjFIFx2SMbgffbdt89cZ3WWW9Ns6p2jS9zxKBSQgqAzj5FwQMkjPKqQjo9R900_RtHWJkMsGMM6A8QDBAIb33rSmzbWsr1e6CU7bvPPvpPNt3ng2dB83NwVh5rVzZqlpb_ytMCaFAk8BdDZw1xvx-MyoFS8k31HSIBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920565146</pqid></control><display><type>article</type><title>Fully compliant tensural bistable micromechanisms (FTBM)</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wilcox, D.L. ; Howell, L.L.</creator><creatorcontrib>Wilcox, D.L. ; Howell, L.L.</creatorcontrib><description>A new class of bistable mechanisms, the fully compliant tensural bistable micromechanism (FTBM) class, is introduced. The class consists of linear bistable micromechanisms that undergo tension loads, in addition to the bending loads present, through their range of motion. Proof-of-concept designs fabricated in two different microelectromechanical systems (MEMS) surface micromachining processes were demonstrated. Three sets of refined designs within the FTBM class were designed using optimization methods linked with nonlinear finite element analysis (FEA), then fabricated and tested. Measured force and displacement performance are compared to values obtained by FEA. On-chip actuation of the bistable mechanisms was achieved using thermomechanical in-plane microactuators (TIMs). The FTBM class of bistable mechanisms explores a relatively new design space for fully compliant micromechanisms, and mechanisms from this class have promise in such applications as micro shutter positioning, microvalves, and electrical microrelays. [1448].</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2005.859089</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bending ; Bistable mechanisms ; compliant mechanisms ; Design engineering ; Design methodology ; Displacement measurement ; Exact sciences and technology ; Finite element method ; Finite element methods ; Force measurement ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Microactuators ; Microelectromechanical systems ; Micromachining ; Micromechanical devices ; Micromechanical devices and systems ; on-chip actuation ; Optimization methods ; Physics ; Precision engineering, watch making ; Shutters ; Testing ; Thermomechanical processes</subject><ispartof>Journal of microelectromechanical systems, 2005-12, Vol.14 (6), p.1223-1235</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603</citedby><cites>FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1549857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17334142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, D.L.</creatorcontrib><creatorcontrib>Howell, L.L.</creatorcontrib><title>Fully compliant tensural bistable micromechanisms (FTBM)</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>A new class of bistable mechanisms, the fully compliant tensural bistable micromechanism (FTBM) class, is introduced. The class consists of linear bistable micromechanisms that undergo tension loads, in addition to the bending loads present, through their range of motion. Proof-of-concept designs fabricated in two different microelectromechanical systems (MEMS) surface micromachining processes were demonstrated. Three sets of refined designs within the FTBM class were designed using optimization methods linked with nonlinear finite element analysis (FEA), then fabricated and tested. Measured force and displacement performance are compared to values obtained by FEA. On-chip actuation of the bistable mechanisms was achieved using thermomechanical in-plane microactuators (TIMs). The FTBM class of bistable mechanisms explores a relatively new design space for fully compliant micromechanisms, and mechanisms from this class have promise in such applications as micro shutter positioning, microvalves, and electrical microrelays. [1448].</description><subject>Applied sciences</subject><subject>Bending</subject><subject>Bistable mechanisms</subject><subject>compliant mechanisms</subject><subject>Design engineering</subject><subject>Design methodology</subject><subject>Displacement measurement</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Force measurement</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Microactuators</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>on-chip actuation</subject><subject>Optimization methods</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Shutters</subject><subject>Testing</subject><subject>Thermomechanical processes</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYxoMoOKd_gHgpgjIPnXmbjyZHHZsfbHhwnkuappiRtrNpD_vvzexA8OAlCW9-z8P7PAhdAp4CYHn_upqv3qcJxmwqmMRCHqERSAoxBiaOwxuzNE6BpafozPsNxkCp4CMkFr1zu0g31dZZVXdRZ2rft8pFufWdyp2JKqvbpjL6U9XWVz6aLNaPq7tzdFIq583F4R6jj8V8PXuOl29PL7OHZayJ4F2sEqAEFwpESTUwJVhehF0ESbQJR8E5AZFLGSZ5mVOQ0iSF1GVKjFIFx2SMbgffbdt89cZ3WWW9Ns6p2jS9zxKBSQgqAzj5FwQMkjPKqQjo9R900_RtHWJkMsGMM6A8QDBAIb33rSmzbWsr1e6CU7bvPPvpPNt3ng2dB83NwVh5rVzZqlpb_ytMCaFAk8BdDZw1xvx-MyoFS8k31HSIBg</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Wilcox, D.L.</creator><creator>Howell, L.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20051201</creationdate><title>Fully compliant tensural bistable micromechanisms (FTBM)</title><author>Wilcox, D.L. ; Howell, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Bending</topic><topic>Bistable mechanisms</topic><topic>compliant mechanisms</topic><topic>Design engineering</topic><topic>Design methodology</topic><topic>Displacement measurement</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Force measurement</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Microactuators</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>on-chip actuation</topic><topic>Optimization methods</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Shutters</topic><topic>Testing</topic><topic>Thermomechanical processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, D.L.</creatorcontrib><creatorcontrib>Howell, L.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, D.L.</au><au>Howell, L.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully compliant tensural bistable micromechanisms (FTBM)</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>14</volume><issue>6</issue><spage>1223</spage><epage>1235</epage><pages>1223-1235</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>A new class of bistable mechanisms, the fully compliant tensural bistable micromechanism (FTBM) class, is introduced. The class consists of linear bistable micromechanisms that undergo tension loads, in addition to the bending loads present, through their range of motion. Proof-of-concept designs fabricated in two different microelectromechanical systems (MEMS) surface micromachining processes were demonstrated. Three sets of refined designs within the FTBM class were designed using optimization methods linked with nonlinear finite element analysis (FEA), then fabricated and tested. Measured force and displacement performance are compared to values obtained by FEA. On-chip actuation of the bistable mechanisms was achieved using thermomechanical in-plane microactuators (TIMs). The FTBM class of bistable mechanisms explores a relatively new design space for fully compliant micromechanisms, and mechanisms from this class have promise in such applications as micro shutter positioning, microvalves, and electrical microrelays. [1448].</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2005.859089</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2005-12, Vol.14 (6), p.1223-1235
issn 1057-7157
1941-0158
language eng
recordid cdi_pascalfrancis_primary_17334142
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Bending
Bistable mechanisms
compliant mechanisms
Design engineering
Design methodology
Displacement measurement
Exact sciences and technology
Finite element method
Finite element methods
Force measurement
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical analysis
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Microactuators
Microelectromechanical systems
Micromachining
Micromechanical devices
Micromechanical devices and systems
on-chip actuation
Optimization methods
Physics
Precision engineering, watch making
Shutters
Testing
Thermomechanical processes
title Fully compliant tensural bistable micromechanisms (FTBM)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20compliant%20tensural%20bistable%20micromechanisms%20(FTBM)&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Wilcox,%20D.L.&rft.date=2005-12-01&rft.volume=14&rft.issue=6&rft.spage=1223&rft.epage=1235&rft.pages=1223-1235&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2005.859089&rft_dat=%3Cproquest_pasca%3E1019654648%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-a21430da18f4c15a85bd105832ce832d66318b99583bfb4199e2d9cf73eaad603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920565146&rft_id=info:pmid/&rft_ieee_id=1549857&rfr_iscdi=true