Loading…
Optimizing fiber coupling with a quasi-passive microoptical bench
While the silicon microoptical bench with purely passive locational features was an attempt at breadboard-like integration for photonic applications, it failed to provide the high-precision alignment required for efficient light coupling between devices and/or fibers. To optimize the final alignment...
Saved in:
Published in: | Journal of microelectromechanical systems 2005-12, Vol.14 (6), p.1339-1346 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While the silicon microoptical bench with purely passive locational features was an attempt at breadboard-like integration for photonic applications, it failed to provide the high-precision alignment required for efficient light coupling between devices and/or fibers. To optimize the final alignment without the introduction of on-board active actuators or external high-precision manipulators, we have developed and demonstrated a low-cost, micromachined optical bench with quasipassive locational features capable of submicron alignment optimization. The concept capitalizes on inherent residual tensile stresses produced during the stoichiometric Si/sub 3/N/sub 4/ thin-film deposition process. By selectively trimming stress element on either side of a suspended platform, the equilibrium position can be biased to one side or another, enabling high-resolution relative motion between the suspended platform and the base. We have demonstrated, as a first attempt, high-efficiency fiber-to-fiber alignment using this concept. [1556]. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2005.859091 |