Loading…
Finite element analysis of crack problems for strain gradient material model
A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The gene...
Saved in:
Published in: | Philosophical magazine (Abingdon, England) England), 2005-11, Vol.85 (33-35), p.4245-4256 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333 |
container_end_page | 4256 |
container_issue | 33-35 |
container_start_page | 4245 |
container_title | Philosophical magazine (Abingdon, England) |
container_volume | 85 |
creator | Imatani, S. Hatada, K. Maugin, G. A. |
description | A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems. |
doi_str_mv | 10.1080/14786430500363544 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17356463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29129544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_wF02uhtNJo-ZghspVoWCG12HO5lEopmZmqRo_70Z6mNRxNW93HvO4eMgdErJBSU1uaS8qiVnRBDCJBOc76HJeCsk52z_Z2fiEB3F-EJImaV8gpYL17tksPGmM33C0IPfRBfxYLEOoF_xKgxNfkZsh4BjCuB6_BygdaO8g2SCA4-7oTX-GB1Y8NGcfM0pelrcPM7viuXD7f38elloTqpUcDtrrdXaZN68yJngUDaNrcEw0ZoWTKut5FLTmlVlJagWkptZXXLBm4oxNkXn29zM9rY2ManORW28h94M66jKGS1zKM9CuhXqMMQYjFWr4DoIG0WJGntTO71lz9lXOEQN3gbotYu_xoplGjlCVFud63MzHbwPwbcqwcYP4du0k67SR8rOq3-d7G_AT4YYkyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29129544</pqid></control><display><type>article</type><title>Finite element analysis of crack problems for strain gradient material model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Imatani, S. ; Hatada, K. ; Maugin, G. A.</creator><creatorcontrib>Imatani, S. ; Hatada, K. ; Maugin, G. A.</creatorcontrib><description>A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.</description><identifier>ISSN: 1478-6435</identifier><identifier>EISSN: 1478-6443</identifier><identifier>DOI: 10.1080/14786430500363544</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics</subject><ispartof>Philosophical magazine (Abingdon, England), 2005-11, Vol.85 (33-35), p.4245-4256</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</citedby><cites>FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17356463$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Imatani, S.</creatorcontrib><creatorcontrib>Hatada, K.</creatorcontrib><creatorcontrib>Maugin, G. A.</creatorcontrib><title>Finite element analysis of crack problems for strain gradient material model</title><title>Philosophical magazine (Abingdon, England)</title><description>A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><issn>1478-6435</issn><issn>1478-6443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_wF02uhtNJo-ZghspVoWCG12HO5lEopmZmqRo_70Z6mNRxNW93HvO4eMgdErJBSU1uaS8qiVnRBDCJBOc76HJeCsk52z_Z2fiEB3F-EJImaV8gpYL17tksPGmM33C0IPfRBfxYLEOoF_xKgxNfkZsh4BjCuB6_BygdaO8g2SCA4-7oTX-GB1Y8NGcfM0pelrcPM7viuXD7f38elloTqpUcDtrrdXaZN68yJngUDaNrcEw0ZoWTKut5FLTmlVlJagWkptZXXLBm4oxNkXn29zM9rY2ManORW28h94M66jKGS1zKM9CuhXqMMQYjFWr4DoIG0WJGntTO71lz9lXOEQN3gbotYu_xoplGjlCVFud63MzHbwPwbcqwcYP4du0k67SR8rOq3-d7G_AT4YYkyI</recordid><startdate>20051121</startdate><enddate>20051121</enddate><creator>Imatani, S.</creator><creator>Hatada, K.</creator><creator>Maugin, G. A.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051121</creationdate><title>Finite element analysis of crack problems for strain gradient material model</title><author>Imatani, S. ; Hatada, K. ; Maugin, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imatani, S.</creatorcontrib><creatorcontrib>Hatada, K.</creatorcontrib><creatorcontrib>Maugin, G. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Philosophical magazine (Abingdon, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imatani, S.</au><au>Hatada, K.</au><au>Maugin, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of crack problems for strain gradient material model</atitle><jtitle>Philosophical magazine (Abingdon, England)</jtitle><date>2005-11-21</date><risdate>2005</risdate><volume>85</volume><issue>33-35</issue><spage>4245</spage><epage>4256</epage><pages>4245-4256</pages><issn>1478-6435</issn><eissn>1478-6443</eissn><abstract>A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/14786430500363544</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-6435 |
ispartof | Philosophical magazine (Abingdon, England), 2005-11, Vol.85 (33-35), p.4245-4256 |
issn | 1478-6435 1478-6443 |
language | eng |
recordid | cdi_pascalfrancis_primary_17356463 |
source | Taylor and Francis Science and Technology Collection |
subjects | Condensed matter: structure, mechanical and thermal properties Deformation and plasticity (including yield, ductility, and superplasticity) Exact sciences and technology Fatigue, brittleness, fracture, and cracks Mechanical and acoustical properties of condensed matter Mechanical properties of solids Physics |
title | Finite element analysis of crack problems for strain gradient material model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20crack%20problems%20for%20strain%20gradient%20material%20model&rft.jtitle=Philosophical%20magazine%20(Abingdon,%20England)&rft.au=Imatani,%20S.&rft.date=2005-11-21&rft.volume=85&rft.issue=33-35&rft.spage=4245&rft.epage=4256&rft.pages=4245-4256&rft.issn=1478-6435&rft.eissn=1478-6443&rft_id=info:doi/10.1080/14786430500363544&rft_dat=%3Cproquest_pasca%3E29129544%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29129544&rft_id=info:pmid/&rfr_iscdi=true |