Loading…

Finite element analysis of crack problems for strain gradient material model

A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The gene...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical magazine (Abingdon, England) England), 2005-11, Vol.85 (33-35), p.4245-4256
Main Authors: Imatani, S., Hatada, K., Maugin, G. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333
cites cdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333
container_end_page 4256
container_issue 33-35
container_start_page 4245
container_title Philosophical magazine (Abingdon, England)
container_volume 85
creator Imatani, S.
Hatada, K.
Maugin, G. A.
description A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.
doi_str_mv 10.1080/14786430500363544
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17356463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29129544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_wF02uhtNJo-ZghspVoWCG12HO5lEopmZmqRo_70Z6mNRxNW93HvO4eMgdErJBSU1uaS8qiVnRBDCJBOc76HJeCsk52z_Z2fiEB3F-EJImaV8gpYL17tksPGmM33C0IPfRBfxYLEOoF_xKgxNfkZsh4BjCuB6_BygdaO8g2SCA4-7oTX-GB1Y8NGcfM0pelrcPM7viuXD7f38elloTqpUcDtrrdXaZN68yJngUDaNrcEw0ZoWTKut5FLTmlVlJagWkptZXXLBm4oxNkXn29zM9rY2ManORW28h94M66jKGS1zKM9CuhXqMMQYjFWr4DoIG0WJGntTO71lz9lXOEQN3gbotYu_xoplGjlCVFud63MzHbwPwbcqwcYP4du0k67SR8rOq3-d7G_AT4YYkyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29129544</pqid></control><display><type>article</type><title>Finite element analysis of crack problems for strain gradient material model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Imatani, S. ; Hatada, K. ; Maugin, G. A.</creator><creatorcontrib>Imatani, S. ; Hatada, K. ; Maugin, G. A.</creatorcontrib><description>A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.</description><identifier>ISSN: 1478-6435</identifier><identifier>EISSN: 1478-6443</identifier><identifier>DOI: 10.1080/14786430500363544</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics</subject><ispartof>Philosophical magazine (Abingdon, England), 2005-11, Vol.85 (33-35), p.4245-4256</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</citedby><cites>FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17356463$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Imatani, S.</creatorcontrib><creatorcontrib>Hatada, K.</creatorcontrib><creatorcontrib>Maugin, G. A.</creatorcontrib><title>Finite element analysis of crack problems for strain gradient material model</title><title>Philosophical magazine (Abingdon, England)</title><description>A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><issn>1478-6435</issn><issn>1478-6443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_wF02uhtNJo-ZghspVoWCG12HO5lEopmZmqRo_70Z6mNRxNW93HvO4eMgdErJBSU1uaS8qiVnRBDCJBOc76HJeCsk52z_Z2fiEB3F-EJImaV8gpYL17tksPGmM33C0IPfRBfxYLEOoF_xKgxNfkZsh4BjCuB6_BygdaO8g2SCA4-7oTX-GB1Y8NGcfM0pelrcPM7viuXD7f38elloTqpUcDtrrdXaZN68yJngUDaNrcEw0ZoWTKut5FLTmlVlJagWkptZXXLBm4oxNkXn29zM9rY2ManORW28h94M66jKGS1zKM9CuhXqMMQYjFWr4DoIG0WJGntTO71lz9lXOEQN3gbotYu_xoplGjlCVFud63MzHbwPwbcqwcYP4du0k67SR8rOq3-d7G_AT4YYkyI</recordid><startdate>20051121</startdate><enddate>20051121</enddate><creator>Imatani, S.</creator><creator>Hatada, K.</creator><creator>Maugin, G. A.</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051121</creationdate><title>Finite element analysis of crack problems for strain gradient material model</title><author>Imatani, S. ; Hatada, K. ; Maugin, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imatani, S.</creatorcontrib><creatorcontrib>Hatada, K.</creatorcontrib><creatorcontrib>Maugin, G. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Philosophical magazine (Abingdon, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imatani, S.</au><au>Hatada, K.</au><au>Maugin, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of crack problems for strain gradient material model</atitle><jtitle>Philosophical magazine (Abingdon, England)</jtitle><date>2005-11-21</date><risdate>2005</risdate><volume>85</volume><issue>33-35</issue><spage>4245</spage><epage>4256</epage><pages>4245-4256</pages><issn>1478-6435</issn><eissn>1478-6443</eissn><abstract>A strain gradient material model is developed within the framework of infinitesimal deformation theory and implemented using a finite element simulation. Discussing the governing equations involving the second gradient terms, a complete form of the strain gradient material model is derived. The generalized variational principle, the so-called 'Hu-Washizu principle', is applied to the mixed-type finite element stiffness equation, in which the displacement, the strain, and the second gradient of displacement are variants. The stress-strain concentration is examined, and emphasis is placed on the explicit scale dependence of the objective domain. Stress relaxation behaviour near the crack tip is, in general, observed for small cracks, and the energy release rate calculated through the conventional J-integral is no longer path-independent for such scale-dependent crack problems.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/14786430500363544</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1478-6435
ispartof Philosophical magazine (Abingdon, England), 2005-11, Vol.85 (33-35), p.4245-4256
issn 1478-6435
1478-6443
language eng
recordid cdi_pascalfrancis_primary_17356463
source Taylor and Francis Science and Technology Collection
subjects Condensed matter: structure, mechanical and thermal properties
Deformation and plasticity (including yield, ductility, and superplasticity)
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
title Finite element analysis of crack problems for strain gradient material model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20crack%20problems%20for%20strain%20gradient%20material%20model&rft.jtitle=Philosophical%20magazine%20(Abingdon,%20England)&rft.au=Imatani,%20S.&rft.date=2005-11-21&rft.volume=85&rft.issue=33-35&rft.spage=4245&rft.epage=4256&rft.pages=4245-4256&rft.issn=1478-6435&rft.eissn=1478-6443&rft_id=info:doi/10.1080/14786430500363544&rft_dat=%3Cproquest_pasca%3E29129544%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-4f9dffcce430dff6954a2bbf8ae35dedaedcf646c18372751c564e982454b7333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29129544&rft_id=info:pmid/&rfr_iscdi=true