Loading…

Calculating confidence intervals in parameter estimation: a case study

A method to construct simultaneous confidence intervals for least squares estimates is described. The calculation of one-at-a-time confidence intervals is very popular and straight-forward. However, one-at-a-time confidence intervals result in lower confidence levels than anticipated. Simultaneous c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2006-01, Vol.21 (1), p.508-509
Main Authors: Kyriakides, E., Heydt, G.T.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-4e7b40a28394f5de842df92401e311de7c219688017581a9e327d00a5f961703
cites
container_end_page 509
container_issue 1
container_start_page 508
container_title IEEE transactions on power delivery
container_volume 21
creator Kyriakides, E.
Heydt, G.T.
description A method to construct simultaneous confidence intervals for least squares estimates is described. The calculation of one-at-a-time confidence intervals is very popular and straight-forward. However, one-at-a-time confidence intervals result in lower confidence levels than anticipated. Simultaneous confidence intervals are more difficult to construct, but are more theoretically sound. A power engineering state estimation application is shown; both types of confidence intervals are constructed using actual data.
doi_str_mv 10.1109/TPWRD.2005.848440
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17389999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1564241</ieee_id><sourcerecordid>896234555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4e7b40a28394f5de842df92401e311de7c219688017581a9e327d00a5f961703</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo6XBxA3RVBXHU9uTeJORkeFAUUGXIaYnkql045JK8zbG60guDAQEpLvHJKfkCMKU0rBXCwfn5-upwxATrXQQsAWmVDDVS4Y6G0yAa1lro1Su2QvxjcAEGBgQuYz1_ihcX3dvma-a6u6xNZjVrc9hg_XxLTL1i64FaaDDGNfrxLu2svMZd5FzGI_lJsDslMljIc_6z5Zzm-Ws7t88XB7P7ta5J5r2ecC1YsAxzQ3opIlasHKyjABFDmlJSrPqCm0Bqqkps4gZ6oEcLIyBVXA98n52HYduvchPcau6uixaVyL3RCtNgXjQkqZ5Nm_kilj0qQJnvyBb90Q2vQJq4uCa1FwkxAdkQ9djAEruw4ph7CxFOxX_vY7f_uVvx3zTzWnP41d9K6pgmt9HX8LFdcmjeSOR1cj4u-1LAQTlH8C1e6Mjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866384639</pqid></control><display><type>article</type><title>Calculating confidence intervals in parameter estimation: a case study</title><source>IEEE Xplore (Online service)</source><creator>Kyriakides, E. ; Heydt, G.T.</creator><creatorcontrib>Kyriakides, E. ; Heydt, G.T.</creatorcontrib><description>A method to construct simultaneous confidence intervals for least squares estimates is described. The calculation of one-at-a-time confidence intervals is very popular and straight-forward. However, one-at-a-time confidence intervals result in lower confidence levels than anticipated. Simultaneous confidence intervals are more difficult to construct, but are more theoretically sound. A power engineering state estimation application is shown; both types of confidence intervals are constructed using actual data.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2005.848440</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bonferroni ; Computer aided software engineering ; confidence interval ; Confidence intervals ; Construction ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Estimates ; Exact sciences and technology ; least squares ; Least squares approximation ; Least squares method ; Mathematical analysis ; Parameter estimation ; Power engineering ; Power networks and lines ; Power systems ; Probability distribution ; Sound ; State estimation ; Statistical distributions ; Student's ; Synchronous generators ; Theory. Simulation</subject><ispartof>IEEE transactions on power delivery, 2006-01, Vol.21 (1), p.508-509</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4e7b40a28394f5de842df92401e311de7c219688017581a9e327d00a5f961703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1564241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,4012,27910,27911,27912,54783</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17389999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyriakides, E.</creatorcontrib><creatorcontrib>Heydt, G.T.</creatorcontrib><title>Calculating confidence intervals in parameter estimation: a case study</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>A method to construct simultaneous confidence intervals for least squares estimates is described. The calculation of one-at-a-time confidence intervals is very popular and straight-forward. However, one-at-a-time confidence intervals result in lower confidence levels than anticipated. Simultaneous confidence intervals are more difficult to construct, but are more theoretically sound. A power engineering state estimation application is shown; both types of confidence intervals are constructed using actual data.</description><subject>Applied sciences</subject><subject>Bonferroni</subject><subject>Computer aided software engineering</subject><subject>confidence interval</subject><subject>Confidence intervals</subject><subject>Construction</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>least squares</subject><subject>Least squares approximation</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Parameter estimation</subject><subject>Power engineering</subject><subject>Power networks and lines</subject><subject>Power systems</subject><subject>Probability distribution</subject><subject>Sound</subject><subject>State estimation</subject><subject>Statistical distributions</subject><subject>Student's</subject><subject>Synchronous generators</subject><subject>Theory. Simulation</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo6XBxA3RVBXHU9uTeJORkeFAUUGXIaYnkql045JK8zbG60guDAQEpLvHJKfkCMKU0rBXCwfn5-upwxATrXQQsAWmVDDVS4Y6G0yAa1lro1Su2QvxjcAEGBgQuYz1_ihcX3dvma-a6u6xNZjVrc9hg_XxLTL1i64FaaDDGNfrxLu2svMZd5FzGI_lJsDslMljIc_6z5Zzm-Ws7t88XB7P7ta5J5r2ecC1YsAxzQ3opIlasHKyjABFDmlJSrPqCm0Bqqkps4gZ6oEcLIyBVXA98n52HYduvchPcau6uixaVyL3RCtNgXjQkqZ5Nm_kilj0qQJnvyBb90Q2vQJq4uCa1FwkxAdkQ9djAEruw4ph7CxFOxX_vY7f_uVvx3zTzWnP41d9K6pgmt9HX8LFdcmjeSOR1cj4u-1LAQTlH8C1e6Mjw</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Kyriakides, E.</creator><creator>Heydt, G.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200601</creationdate><title>Calculating confidence intervals in parameter estimation: a case study</title><author>Kyriakides, E. ; Heydt, G.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4e7b40a28394f5de842df92401e311de7c219688017581a9e327d00a5f961703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Bonferroni</topic><topic>Computer aided software engineering</topic><topic>confidence interval</topic><topic>Confidence intervals</topic><topic>Construction</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>least squares</topic><topic>Least squares approximation</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Parameter estimation</topic><topic>Power engineering</topic><topic>Power networks and lines</topic><topic>Power systems</topic><topic>Probability distribution</topic><topic>Sound</topic><topic>State estimation</topic><topic>Statistical distributions</topic><topic>Student's</topic><topic>Synchronous generators</topic><topic>Theory. Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyriakides, E.</creatorcontrib><creatorcontrib>Heydt, G.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyriakides, E.</au><au>Heydt, G.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculating confidence intervals in parameter estimation: a case study</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2006-01</date><risdate>2006</risdate><volume>21</volume><issue>1</issue><spage>508</spage><epage>509</epage><pages>508-509</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>A method to construct simultaneous confidence intervals for least squares estimates is described. The calculation of one-at-a-time confidence intervals is very popular and straight-forward. However, one-at-a-time confidence intervals result in lower confidence levels than anticipated. Simultaneous confidence intervals are more difficult to construct, but are more theoretically sound. A power engineering state estimation application is shown; both types of confidence intervals are constructed using actual data.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2005.848440</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2006-01, Vol.21 (1), p.508-509
issn 0885-8977
1937-4208
language eng
recordid cdi_pascalfrancis_primary_17389999
source IEEE Xplore (Online service)
subjects Applied sciences
Bonferroni
Computer aided software engineering
confidence interval
Confidence intervals
Construction
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
Estimates
Exact sciences and technology
least squares
Least squares approximation
Least squares method
Mathematical analysis
Parameter estimation
Power engineering
Power networks and lines
Power systems
Probability distribution
Sound
State estimation
Statistical distributions
Student's
Synchronous generators
Theory. Simulation
title Calculating confidence intervals in parameter estimation: a case study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculating%20confidence%20intervals%20in%20parameter%20estimation:%20a%20case%20study&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Kyriakides,%20E.&rft.date=2006-01&rft.volume=21&rft.issue=1&rft.spage=508&rft.epage=509&rft.pages=508-509&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2005.848440&rft_dat=%3Cproquest_pasca%3E896234555%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-4e7b40a28394f5de842df92401e311de7c219688017581a9e327d00a5f961703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866384639&rft_id=info:pmid/&rft_ieee_id=1564241&rfr_iscdi=true