Loading…

Dead-zone digital controllers for improved dynamic response of low harmonic rectifiers

This paper introduces a simple digital control method that enables fast regulation of the output voltage in low harmonic rectifiers with power factor correction (PFC). The method is based on the use of an insensitive region, i.e., "dead-zone," in analog-to-digital conversion, for eliminati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2006-01, Vol.21 (1), p.173-181
Main Authors: Prodic, A., Maksimovic, D., Erickson, R.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces a simple digital control method that enables fast regulation of the output voltage in low harmonic rectifiers with power factor correction (PFC). The method is based on the use of an insensitive region, i.e., "dead-zone," in analog-to-digital conversion, for elimination of the output capacitor voltage ripple in the feedback loop. The dead-zone can either be fixed and larger than the maximum ripple magnitude, or it can be dynamically adjusted in accordance with the output load. Simple implementations of these two dead-zone controllers are shown on an experimental completely digitally controlled 250-W boost PFC operating at 200-kHz switching frequency. The experimental results show that this control method results in low current harmonics and improved load transient responses, which are significantly faster than in low-harmonic rectifiers with conventional low-bandwidth voltage-loop controllers.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2005.861157