Loading…

A low-power multirate differential PSK receiver for space applications

Wireless communication for deep-space and satellite applications needs to accommodate the Doppler shift caused by the movement of the space vehicle and should consume low power to conserve the onboard power. A low-power phase-shift keying (PSK) receiver has been designed for such applications. The r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2005-11, Vol.54 (6), p.2074-2084
Main Authors: Yuce, M.R., Wentai Liu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless communication for deep-space and satellite applications needs to accommodate the Doppler shift caused by the movement of the space vehicle and should consume low power to conserve the onboard power. A low-power phase-shift keying (PSK) receiver has been designed for such applications. The receiver employs double differential detection to be robust against Doppler shift and uses subsampling with a 1-bit A/D converter and digital decimation architecture at the front end to achieve low-power consumption. The receiver is also designed to be programmable to operate using single-stage differential detection instead of double-stage differential detection at low Doppler rates to obtain optimum performance. Furthermore, the baseband can be employed in either direct subsampling or intermediate frequency (IF)-sampling front ends. Both front ends offer minimal power consumption and differ from traditional types by replacing some conventional analog components such as a voltage-controlled oscillator, mixer, or phase-locked loop with their digital counterparts. This eliminates problems due to dc offset, dc voltage drifts, and low-frequency (LF) noise. The paper also includes a brief discussion of the nonidealities existing in real applications. The proposed phase shift keying (PSK) receiver supports a wide range of data rates from 0.1-100 Kbps and has been implemented in a CMOS process.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2005.858196