Loading…

Stability analysis of an infinite-dimensional linearized plug flow reactor model

A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is describ...

Full description

Saved in:
Bibliographic Details
Main Authors: Aksikas, H., Winkin, J.J., Dochain, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2422 Vol.3
container_issue
container_start_page 2417
container_title
container_volume 3
creator Aksikas, H.
Winkin, J.J.
Dochain, D.
description A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.
doi_str_mv 10.1109/CDC.2004.1428768
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17498394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1428768</ieee_id><sourcerecordid>17498394</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-81815931ed35a9f6dcd864c1457ab2d43cef4c1ae0cb70f0694c3a653c7bf3f23</originalsourceid><addsrcrecordid>eNpFUE1LxDAUDKjguu5d8JKLx64vH02To9RPWFBQz8trmsiTbLs0FVl_vYUKwsDMMMMchrELAWshwF3Xt_VaAui10NJWxh6xlassTFDWWCmP2QKEE4WUwpyys5w_AcCCMQv28jpiQ4nGA8cO0yFT5n2cNKcuUkdjKFrahS5TP8U8URdwoJ_Q8n36-uAx9d98COjHfuC7vg3pnJ1ETDms_njJ3u_v3urHYvP88FTfbAqSUI6FFVaUTonQqhJdNK1vrdFe6LLCRrZa-RAniwF8U0EE47RXaErlqyaqKNWSXc27e8weUxyw85S3-4F2OBy2otLOKqen3uXcoxDCfzwfpX4BNe5czA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stability analysis of an infinite-dimensional linearized plug flow reactor model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aksikas, H. ; Winkin, J.J. ; Dochain, D.</creator><creatorcontrib>Aksikas, H. ; Winkin, J.J. ; Dochain, D.</creatorcontrib><description>A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1428768</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Chemical reactors ; Computer science; control theory; systems ; Control theory. Systems ; Differential equations ; Exact sciences and technology ; Inductors ; Kinetic theory ; Nonlinear equations ; Partial differential equations ; Performance analysis ; Plugs ; Riccati equations ; Stability analysis</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.3, p.2417-2422 Vol.3</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1428768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1428768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17498394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aksikas, H.</creatorcontrib><creatorcontrib>Winkin, J.J.</creatorcontrib><creatorcontrib>Dochain, D.</creatorcontrib><title>Stability analysis of an infinite-dimensional linearized plug flow reactor model</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.</description><subject>Applied sciences</subject><subject>Chemical reactors</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Inductors</subject><subject>Kinetic theory</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Performance analysis</subject><subject>Plugs</subject><subject>Riccati equations</subject><subject>Stability analysis</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUE1LxDAUDKjguu5d8JKLx64vH02To9RPWFBQz8trmsiTbLs0FVl_vYUKwsDMMMMchrELAWshwF3Xt_VaAui10NJWxh6xlassTFDWWCmP2QKEE4WUwpyys5w_AcCCMQv28jpiQ4nGA8cO0yFT5n2cNKcuUkdjKFrahS5TP8U8URdwoJ_Q8n36-uAx9d98COjHfuC7vg3pnJ1ETDms_njJ3u_v3urHYvP88FTfbAqSUI6FFVaUTonQqhJdNK1vrdFe6LLCRrZa-RAniwF8U0EE47RXaErlqyaqKNWSXc27e8weUxyw85S3-4F2OBy2otLOKqen3uXcoxDCfzwfpX4BNe5czA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Aksikas, H.</creator><creator>Winkin, J.J.</creator><creator>Dochain, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Stability analysis of an infinite-dimensional linearized plug flow reactor model</title><author>Aksikas, H. ; Winkin, J.J. ; Dochain, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-81815931ed35a9f6dcd864c1457ab2d43cef4c1ae0cb70f0694c3a653c7bf3f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Chemical reactors</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Inductors</topic><topic>Kinetic theory</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Performance analysis</topic><topic>Plugs</topic><topic>Riccati equations</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Aksikas, H.</creatorcontrib><creatorcontrib>Winkin, J.J.</creatorcontrib><creatorcontrib>Dochain, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aksikas, H.</au><au>Winkin, J.J.</au><au>Dochain, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability analysis of an infinite-dimensional linearized plug flow reactor model</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>3</volume><spage>2417</spage><epage>2422 Vol.3</epage><pages>2417-2422 Vol.3</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1428768</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.3, p.2417-2422 Vol.3
issn 0191-2216
language eng
recordid cdi_pascalfrancis_primary_17498394
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Chemical reactors
Computer science
control theory
systems
Control theory. Systems
Differential equations
Exact sciences and technology
Inductors
Kinetic theory
Nonlinear equations
Partial differential equations
Performance analysis
Plugs
Riccati equations
Stability analysis
title Stability analysis of an infinite-dimensional linearized plug flow reactor model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20analysis%20of%20an%20infinite-dimensional%20linearized%20plug%20flow%20reactor%20model&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Aksikas,%20H.&rft.date=2004&rft.volume=3&rft.spage=2417&rft.epage=2422%20Vol.3&rft.pages=2417-2422%20Vol.3&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1428768&rft_dat=%3Cpascalfrancis_6IE%3E17498394%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i205t-81815931ed35a9f6dcd864c1457ab2d43cef4c1ae0cb70f0694c3a653c7bf3f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1428768&rfr_iscdi=true