Loading…
Stability analysis of an infinite-dimensional linearized plug flow reactor model
A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is describ...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2422 Vol.3 |
container_issue | |
container_start_page | 2417 |
container_title | |
container_volume | 3 |
creator | Aksikas, H. Winkin, J.J. Dochain, D. |
description | A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence. |
doi_str_mv | 10.1109/CDC.2004.1428768 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17498394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1428768</ieee_id><sourcerecordid>17498394</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-81815931ed35a9f6dcd864c1457ab2d43cef4c1ae0cb70f0694c3a653c7bf3f23</originalsourceid><addsrcrecordid>eNpFUE1LxDAUDKjguu5d8JKLx64vH02To9RPWFBQz8trmsiTbLs0FVl_vYUKwsDMMMMchrELAWshwF3Xt_VaAui10NJWxh6xlassTFDWWCmP2QKEE4WUwpyys5w_AcCCMQv28jpiQ4nGA8cO0yFT5n2cNKcuUkdjKFrahS5TP8U8URdwoJ_Q8n36-uAx9d98COjHfuC7vg3pnJ1ETDms_njJ3u_v3urHYvP88FTfbAqSUI6FFVaUTonQqhJdNK1vrdFe6LLCRrZa-RAniwF8U0EE47RXaErlqyaqKNWSXc27e8weUxyw85S3-4F2OBy2otLOKqen3uXcoxDCfzwfpX4BNe5czA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stability analysis of an infinite-dimensional linearized plug flow reactor model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aksikas, H. ; Winkin, J.J. ; Dochain, D.</creator><creatorcontrib>Aksikas, H. ; Winkin, J.J. ; Dochain, D.</creatorcontrib><description>A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1428768</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Chemical reactors ; Computer science; control theory; systems ; Control theory. Systems ; Differential equations ; Exact sciences and technology ; Inductors ; Kinetic theory ; Nonlinear equations ; Partial differential equations ; Performance analysis ; Plugs ; Riccati equations ; Stability analysis</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.3, p.2417-2422 Vol.3</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1428768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1428768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17498394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aksikas, H.</creatorcontrib><creatorcontrib>Winkin, J.J.</creatorcontrib><creatorcontrib>Dochain, D.</creatorcontrib><title>Stability analysis of an infinite-dimensional linearized plug flow reactor model</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.</description><subject>Applied sciences</subject><subject>Chemical reactors</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Inductors</subject><subject>Kinetic theory</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Performance analysis</subject><subject>Plugs</subject><subject>Riccati equations</subject><subject>Stability analysis</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUE1LxDAUDKjguu5d8JKLx64vH02To9RPWFBQz8trmsiTbLs0FVl_vYUKwsDMMMMchrELAWshwF3Xt_VaAui10NJWxh6xlassTFDWWCmP2QKEE4WUwpyys5w_AcCCMQv28jpiQ4nGA8cO0yFT5n2cNKcuUkdjKFrahS5TP8U8URdwoJ_Q8n36-uAx9d98COjHfuC7vg3pnJ1ETDms_njJ3u_v3urHYvP88FTfbAqSUI6FFVaUTonQqhJdNK1vrdFe6LLCRrZa-RAniwF8U0EE47RXaErlqyaqKNWSXc27e8weUxyw85S3-4F2OBy2otLOKqen3uXcoxDCfzwfpX4BNe5czA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Aksikas, H.</creator><creator>Winkin, J.J.</creator><creator>Dochain, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Stability analysis of an infinite-dimensional linearized plug flow reactor model</title><author>Aksikas, H. ; Winkin, J.J. ; Dochain, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-81815931ed35a9f6dcd864c1457ab2d43cef4c1ae0cb70f0694c3a653c7bf3f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Chemical reactors</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Inductors</topic><topic>Kinetic theory</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Performance analysis</topic><topic>Plugs</topic><topic>Riccati equations</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Aksikas, H.</creatorcontrib><creatorcontrib>Winkin, J.J.</creatorcontrib><creatorcontrib>Dochain, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aksikas, H.</au><au>Winkin, J.J.</au><au>Dochain, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability analysis of an infinite-dimensional linearized plug flow reactor model</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>3</volume><spage>2417</spage><epage>2422 Vol.3</epage><pages>2417-2422 Vol.3</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>A stability analysis is performed for a linearized plug flow reactor model. The dynamics of the linearized process are described by linear partial differential equations (PDE's) with spatial-dependent coefficients. The analysis is performed on an equivalent triangularized model, that is described by a triangular system of PDE's. Then the stability of the linearized model is established, by using the invariance of stability under system equivalence.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1428768</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.3, p.2417-2422 Vol.3 |
issn | 0191-2216 |
language | eng |
recordid | cdi_pascalfrancis_primary_17498394 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Chemical reactors Computer science control theory systems Control theory. Systems Differential equations Exact sciences and technology Inductors Kinetic theory Nonlinear equations Partial differential equations Performance analysis Plugs Riccati equations Stability analysis |
title | Stability analysis of an infinite-dimensional linearized plug flow reactor model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20analysis%20of%20an%20infinite-dimensional%20linearized%20plug%20flow%20reactor%20model&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Aksikas,%20H.&rft.date=2004&rft.volume=3&rft.spage=2417&rft.epage=2422%20Vol.3&rft.pages=2417-2422%20Vol.3&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1428768&rft_dat=%3Cpascalfrancis_6IE%3E17498394%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i205t-81815931ed35a9f6dcd864c1457ab2d43cef4c1ae0cb70f0694c3a653c7bf3f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1428768&rfr_iscdi=true |