Loading…

Iterative MILP methods for vehicle control problems

Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address...

Full description

Saved in:
Bibliographic Details
Main Authors: Earl, M.G., D'Andrea, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4374 Vol.4
container_issue
container_start_page 4369
container_title
container_volume 4
creator Earl, M.G.
D'Andrea, R.
description Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.
doi_str_mv 10.1109/CDC.2004.1429438
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17498724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1429438</ieee_id><sourcerecordid>17498724</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-d47020f3ab74ccb97a3f4792ad607e5763f4f26cbaf11329abac62613cb2265a3</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxAMquK57F7z04rH15SVNmqPUr0JFD3peXtOErbTbkpQF_3sLFYSBYZgfcxjGbjhknIO5Lx_LDAFkxiUaKYoztjO6gEWiUAXiOdsANzxF5OqSXcX4DQAFKLVhoppdoLk7ueStqj-Swc2HsY2JH0NycofO9i6x43EOY59MYWx6N8RrduGpj27351v29fz0Wb6m9ftLVT7UaYeQz2krNSB4QY2W1jZGk_BSG6RWgXa5Vkv0qGxDnnOBhhqyChUXtkFUOYktu1t3J4qWeh_oaLu4n0I3UPjZcy1NoVEu3O3Kdc65_3r9QvwC5uhQ9Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Iterative MILP methods for vehicle control problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Earl, M.G. ; D'Andrea, R.</creator><creatorcontrib>Earl, M.G. ; D'Andrea, R.</creatorcontrib><description>Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1429438</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Couplings ; Exact sciences and technology ; Iterative algorithms ; Iterative methods ; Mathematical programming ; Mixed integer linear programming ; Nonlinear equations ; Operational research and scientific management ; Operational research. Management science ; Optimal control ; Reconnaissance ; Sampling methods ; Space vehicles ; Vehicle dynamics</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.4, p.4369-4374 Vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1429438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1429438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17498724$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Earl, M.G.</creatorcontrib><creatorcontrib>D'Andrea, R.</creatorcontrib><title>Iterative MILP methods for vehicle control problems</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Couplings</subject><subject>Exact sciences and technology</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical programming</subject><subject>Mixed integer linear programming</subject><subject>Nonlinear equations</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimal control</subject><subject>Reconnaissance</subject><subject>Sampling methods</subject><subject>Space vehicles</subject><subject>Vehicle dynamics</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1LxDAUxAMquK57F7z04rH15SVNmqPUr0JFD3peXtOErbTbkpQF_3sLFYSBYZgfcxjGbjhknIO5Lx_LDAFkxiUaKYoztjO6gEWiUAXiOdsANzxF5OqSXcX4DQAFKLVhoppdoLk7ueStqj-Swc2HsY2JH0NycofO9i6x43EOY59MYWx6N8RrduGpj27351v29fz0Wb6m9ftLVT7UaYeQz2krNSB4QY2W1jZGk_BSG6RWgXa5Vkv0qGxDnnOBhhqyChUXtkFUOYktu1t3J4qWeh_oaLu4n0I3UPjZcy1NoVEu3O3Kdc65_3r9QvwC5uhQ9Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Earl, M.G.</creator><creator>D'Andrea, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Iterative MILP methods for vehicle control problems</title><author>Earl, M.G. ; D'Andrea, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-d47020f3ab74ccb97a3f4792ad607e5763f4f26cbaf11329abac62613cb2265a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Couplings</topic><topic>Exact sciences and technology</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical programming</topic><topic>Mixed integer linear programming</topic><topic>Nonlinear equations</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimal control</topic><topic>Reconnaissance</topic><topic>Sampling methods</topic><topic>Space vehicles</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Earl, M.G.</creatorcontrib><creatorcontrib>D'Andrea, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Earl, M.G.</au><au>D'Andrea, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Iterative MILP methods for vehicle control problems</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>4369</spage><epage>4374 Vol.4</epage><pages>4369-4374 Vol.4</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1429438</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.4, p.4369-4374 Vol.4
issn 0191-2216
language eng
recordid cdi_pascalfrancis_primary_17498724
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Couplings
Exact sciences and technology
Iterative algorithms
Iterative methods
Mathematical programming
Mixed integer linear programming
Nonlinear equations
Operational research and scientific management
Operational research. Management science
Optimal control
Reconnaissance
Sampling methods
Space vehicles
Vehicle dynamics
title Iterative MILP methods for vehicle control problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Iterative%20MILP%20methods%20for%20vehicle%20control%20problems&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Earl,%20M.G.&rft.date=2004&rft.volume=4&rft.spage=4369&rft.epage=4374%20Vol.4&rft.pages=4369-4374%20Vol.4&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1429438&rft_dat=%3Cpascalfrancis_6IE%3E17498724%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i205t-d47020f3ab74ccb97a3f4792ad607e5763f4f26cbaf11329abac62613cb2265a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1429438&rfr_iscdi=true