Loading…
Iterative MILP methods for vehicle control problems
Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4374 Vol.4 |
container_issue | |
container_start_page | 4369 |
container_title | |
container_volume | 4 |
creator | Earl, M.G. D'Andrea, R. |
description | Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort. |
doi_str_mv | 10.1109/CDC.2004.1429438 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17498724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1429438</ieee_id><sourcerecordid>17498724</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-d47020f3ab74ccb97a3f4792ad607e5763f4f26cbaf11329abac62613cb2265a3</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxAMquK57F7z04rH15SVNmqPUr0JFD3peXtOErbTbkpQF_3sLFYSBYZgfcxjGbjhknIO5Lx_LDAFkxiUaKYoztjO6gEWiUAXiOdsANzxF5OqSXcX4DQAFKLVhoppdoLk7ueStqj-Swc2HsY2JH0NycofO9i6x43EOY59MYWx6N8RrduGpj27351v29fz0Wb6m9ftLVT7UaYeQz2krNSB4QY2W1jZGk_BSG6RWgXa5Vkv0qGxDnnOBhhqyChUXtkFUOYktu1t3J4qWeh_oaLu4n0I3UPjZcy1NoVEu3O3Kdc65_3r9QvwC5uhQ9Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Iterative MILP methods for vehicle control problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Earl, M.G. ; D'Andrea, R.</creator><creatorcontrib>Earl, M.G. ; D'Andrea, R.</creatorcontrib><description>Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1429438</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Couplings ; Exact sciences and technology ; Iterative algorithms ; Iterative methods ; Mathematical programming ; Mixed integer linear programming ; Nonlinear equations ; Operational research and scientific management ; Operational research. Management science ; Optimal control ; Reconnaissance ; Sampling methods ; Space vehicles ; Vehicle dynamics</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.4, p.4369-4374 Vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1429438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1429438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17498724$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Earl, M.G.</creatorcontrib><creatorcontrib>D'Andrea, R.</creatorcontrib><title>Iterative MILP methods for vehicle control problems</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Couplings</subject><subject>Exact sciences and technology</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical programming</subject><subject>Mixed integer linear programming</subject><subject>Nonlinear equations</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimal control</subject><subject>Reconnaissance</subject><subject>Sampling methods</subject><subject>Space vehicles</subject><subject>Vehicle dynamics</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1LxDAUxAMquK57F7z04rH15SVNmqPUr0JFD3peXtOErbTbkpQF_3sLFYSBYZgfcxjGbjhknIO5Lx_LDAFkxiUaKYoztjO6gEWiUAXiOdsANzxF5OqSXcX4DQAFKLVhoppdoLk7ueStqj-Swc2HsY2JH0NycofO9i6x43EOY59MYWx6N8RrduGpj27351v29fz0Wb6m9ftLVT7UaYeQz2krNSB4QY2W1jZGk_BSG6RWgXa5Vkv0qGxDnnOBhhqyChUXtkFUOYktu1t3J4qWeh_oaLu4n0I3UPjZcy1NoVEu3O3Kdc65_3r9QvwC5uhQ9Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Earl, M.G.</creator><creator>D'Andrea, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Iterative MILP methods for vehicle control problems</title><author>Earl, M.G. ; D'Andrea, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-d47020f3ab74ccb97a3f4792ad607e5763f4f26cbaf11329abac62613cb2265a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Couplings</topic><topic>Exact sciences and technology</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical programming</topic><topic>Mixed integer linear programming</topic><topic>Nonlinear equations</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimal control</topic><topic>Reconnaissance</topic><topic>Sampling methods</topic><topic>Space vehicles</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Earl, M.G.</creatorcontrib><creatorcontrib>D'Andrea, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Earl, M.G.</au><au>D'Andrea, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Iterative MILP methods for vehicle control problems</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>4369</spage><epage>4374 Vol.4</epage><pages>4369-4374 Vol.4</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>Mixed integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we introduce two iterative MILP algorithms that address this issue. The first is for obstacle avoidance problems, and the second is for minimum time optimal control problems. The algorithms require fewer binary variables than standard MILP methods and on average require much less computational effort.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1429438</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.4, p.4369-4374 Vol.4 |
issn | 0191-2216 |
language | eng |
recordid | cdi_pascalfrancis_primary_17498724 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Couplings Exact sciences and technology Iterative algorithms Iterative methods Mathematical programming Mixed integer linear programming Nonlinear equations Operational research and scientific management Operational research. Management science Optimal control Reconnaissance Sampling methods Space vehicles Vehicle dynamics |
title | Iterative MILP methods for vehicle control problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Iterative%20MILP%20methods%20for%20vehicle%20control%20problems&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Earl,%20M.G.&rft.date=2004&rft.volume=4&rft.spage=4369&rft.epage=4374%20Vol.4&rft.pages=4369-4374%20Vol.4&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1429438&rft_dat=%3Cpascalfrancis_6IE%3E17498724%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i205t-d47020f3ab74ccb97a3f4792ad607e5763f4f26cbaf11329abac62613cb2265a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1429438&rfr_iscdi=true |