Loading…

Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13C NMR Spectroscopy

Quantitative branch determination in polyolefins by melt‐state NMR has been investigated paying particular attention to sensitivity per unit time. Comparison of spectra obtained using spectrometers operating at 700, 500 and 300 MHz 1H Larmor frequency, with 4 and 7 mm MAS probeheads, showed that the...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular chemistry and physics 2006-02, Vol.207 (4), p.382-395
Main Authors: Klimke, Katja, Parkinson, Matthew, Piel, Christian, Kaminsky, Walter, Spiess, Hans Wolfgang, Wilhelm, Manfred
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 395
container_issue 4
container_start_page 382
container_title Macromolecular chemistry and physics
container_volume 207
creator Klimke, Katja
Parkinson, Matthew
Piel, Christian
Kaminsky, Walter
Spiess, Hans Wolfgang
Wilhelm, Manfred
description Quantitative branch determination in polyolefins by melt‐state NMR has been investigated paying particular attention to sensitivity per unit time. Comparison of spectra obtained using spectrometers operating at 700, 500 and 300 MHz 1H Larmor frequency, with 4 and 7 mm MAS probeheads, showed that the best sensitivity was achieved at 500 MHz using a 7 mm 13C1H optimised high‐temperature probehead. For materials available in large quantities static melt‐state NMR, using large‐diameter detection coils at 300 MHz, was shown to produce comparable results to melt‐state MAS measurements in less time. Artificial line broadening, introduced by FID truncation, was reduced by the use of π pulse‐train heteronuclear dipolar‐decoupling. This decoupling method, when combined with a higher duty‐cycle, allowed for the whole FID to be acquired. Optimised methods have been applied to the characterisation of short‐chain branching (SCB) in polyethylene‐ and poly(propylene)‐co‐α‐olefins with varying comonomer incorporation. Long‐chain branch (LCB) concentrations of 8 branches per 100 000 CH2 were quantified for an industrial ‘linear’ polyethylene in 13 h, with a signal‐to‐noise ratio of 10 for the α branch site used. The use of J‐coupling mediated polarisation transfer techniques were also shown to be viable for branch quantification in the melt‐state. An example of the time efficient quantification of very low branch contents in polyethylene using optimised 13C melt‐state NMR under magic‐angle spinning. Concentrations of 7–8 branches per 100 000 CH2 groups were determined in only 13 h.
doi_str_mv 10.1002/macp.200500422
format article
fullrecord <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17519374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_29RC5PCJ_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1182-4034745a61c1fcf69a5a87e10768c119fd60868caf356d6bfbc3d2d089eb344f3</originalsourceid><addsrcrecordid>eNpFkDFPwzAQhS0EEqWwMnthTDnbcRKPJYICamlpQUgsluPYwpAmVhIE-fekCpTp3tO9dzp9CJ0TmBAAerlV2k8oAAcIKT1AI8IpCZhg_LDXQGlAGKfH6KRp3gEgARGPkF761m1do1pXlViVOZ56Xzg9-MriVVV0VWGsK_FVrUr9hh8_Vdk6-5fJOrwwRRtsWtUaTFiKHxZrvPFGt3XV6Mp3p-jIqqIxZ79zjJ5vrp_S22C-nN2l03ngCEloEAIL45CriGhitY2E4iqJDYE4SjQhwuYRJL1UlvEojzKbaZbTHBJhMhaGlo3RxXDXq0arwu7edY30tduqupMk5kSwOOxzYsh9ucJ0_3uQO45yx1HuOcrFNF3tXd8Nhq5rWvO976r6Q0Yxi7l8eZhJKtYpX6X38pX9AFqEeGI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13C NMR Spectroscopy</title><source>Wiley</source><creator>Klimke, Katja ; Parkinson, Matthew ; Piel, Christian ; Kaminsky, Walter ; Spiess, Hans Wolfgang ; Wilhelm, Manfred</creator><creatorcontrib>Klimke, Katja ; Parkinson, Matthew ; Piel, Christian ; Kaminsky, Walter ; Spiess, Hans Wolfgang ; Wilhelm, Manfred</creatorcontrib><description>Quantitative branch determination in polyolefins by melt‐state NMR has been investigated paying particular attention to sensitivity per unit time. Comparison of spectra obtained using spectrometers operating at 700, 500 and 300 MHz 1H Larmor frequency, with 4 and 7 mm MAS probeheads, showed that the best sensitivity was achieved at 500 MHz using a 7 mm 13C1H optimised high‐temperature probehead. For materials available in large quantities static melt‐state NMR, using large‐diameter detection coils at 300 MHz, was shown to produce comparable results to melt‐state MAS measurements in less time. Artificial line broadening, introduced by FID truncation, was reduced by the use of π pulse‐train heteronuclear dipolar‐decoupling. This decoupling method, when combined with a higher duty‐cycle, allowed for the whole FID to be acquired. Optimised methods have been applied to the characterisation of short‐chain branching (SCB) in polyethylene‐ and poly(propylene)‐co‐α‐olefins with varying comonomer incorporation. Long‐chain branch (LCB) concentrations of 8 branches per 100 000 CH2 were quantified for an industrial ‘linear’ polyethylene in 13 h, with a signal‐to‐noise ratio of 10 for the α branch site used. The use of J‐coupling mediated polarisation transfer techniques were also shown to be viable for branch quantification in the melt‐state. An example of the time efficient quantification of very low branch contents in polyethylene using optimised 13C melt‐state NMR under magic‐angle spinning. Concentrations of 7–8 branches per 100 000 CH2 groups were determined in only 13 h.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.200500422</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; branch ; Exact sciences and technology ; melt ; NMR ; Organic polymers ; Physicochemistry of polymers ; polyethylene ; Properties and characterization ; quantification ; Structure, morphology and analysis</subject><ispartof>Macromolecular chemistry and physics, 2006-02, Vol.207 (4), p.382-395</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17519374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klimke, Katja</creatorcontrib><creatorcontrib>Parkinson, Matthew</creatorcontrib><creatorcontrib>Piel, Christian</creatorcontrib><creatorcontrib>Kaminsky, Walter</creatorcontrib><creatorcontrib>Spiess, Hans Wolfgang</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><title>Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13C NMR Spectroscopy</title><title>Macromolecular chemistry and physics</title><addtitle>Macromol. Chem. Phys</addtitle><description>Quantitative branch determination in polyolefins by melt‐state NMR has been investigated paying particular attention to sensitivity per unit time. Comparison of spectra obtained using spectrometers operating at 700, 500 and 300 MHz 1H Larmor frequency, with 4 and 7 mm MAS probeheads, showed that the best sensitivity was achieved at 500 MHz using a 7 mm 13C1H optimised high‐temperature probehead. For materials available in large quantities static melt‐state NMR, using large‐diameter detection coils at 300 MHz, was shown to produce comparable results to melt‐state MAS measurements in less time. Artificial line broadening, introduced by FID truncation, was reduced by the use of π pulse‐train heteronuclear dipolar‐decoupling. This decoupling method, when combined with a higher duty‐cycle, allowed for the whole FID to be acquired. Optimised methods have been applied to the characterisation of short‐chain branching (SCB) in polyethylene‐ and poly(propylene)‐co‐α‐olefins with varying comonomer incorporation. Long‐chain branch (LCB) concentrations of 8 branches per 100 000 CH2 were quantified for an industrial ‘linear’ polyethylene in 13 h, with a signal‐to‐noise ratio of 10 for the α branch site used. The use of J‐coupling mediated polarisation transfer techniques were also shown to be viable for branch quantification in the melt‐state. An example of the time efficient quantification of very low branch contents in polyethylene using optimised 13C melt‐state NMR under magic‐angle spinning. Concentrations of 7–8 branches per 100 000 CH2 groups were determined in only 13 h.</description><subject>Applied sciences</subject><subject>branch</subject><subject>Exact sciences and technology</subject><subject>melt</subject><subject>NMR</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>polyethylene</subject><subject>Properties and characterization</subject><subject>quantification</subject><subject>Structure, morphology and analysis</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkDFPwzAQhS0EEqWwMnthTDnbcRKPJYICamlpQUgsluPYwpAmVhIE-fekCpTp3tO9dzp9CJ0TmBAAerlV2k8oAAcIKT1AI8IpCZhg_LDXQGlAGKfH6KRp3gEgARGPkF761m1do1pXlViVOZ56Xzg9-MriVVV0VWGsK_FVrUr9hh8_Vdk6-5fJOrwwRRtsWtUaTFiKHxZrvPFGt3XV6Mp3p-jIqqIxZ79zjJ5vrp_S22C-nN2l03ngCEloEAIL45CriGhitY2E4iqJDYE4SjQhwuYRJL1UlvEojzKbaZbTHBJhMhaGlo3RxXDXq0arwu7edY30tduqupMk5kSwOOxzYsh9ucJ0_3uQO45yx1HuOcrFNF3tXd8Nhq5rWvO976r6Q0Yxi7l8eZhJKtYpX6X38pX9AFqEeGI</recordid><startdate>20060224</startdate><enddate>20060224</enddate><creator>Klimke, Katja</creator><creator>Parkinson, Matthew</creator><creator>Piel, Christian</creator><creator>Kaminsky, Walter</creator><creator>Spiess, Hans Wolfgang</creator><creator>Wilhelm, Manfred</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>20060224</creationdate><title>Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13C NMR Spectroscopy</title><author>Klimke, Katja ; Parkinson, Matthew ; Piel, Christian ; Kaminsky, Walter ; Spiess, Hans Wolfgang ; Wilhelm, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1182-4034745a61c1fcf69a5a87e10768c119fd60868caf356d6bfbc3d2d089eb344f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>branch</topic><topic>Exact sciences and technology</topic><topic>melt</topic><topic>NMR</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>polyethylene</topic><topic>Properties and characterization</topic><topic>quantification</topic><topic>Structure, morphology and analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimke, Katja</creatorcontrib><creatorcontrib>Parkinson, Matthew</creatorcontrib><creatorcontrib>Piel, Christian</creatorcontrib><creatorcontrib>Kaminsky, Walter</creatorcontrib><creatorcontrib>Spiess, Hans Wolfgang</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimke, Katja</au><au>Parkinson, Matthew</au><au>Piel, Christian</au><au>Kaminsky, Walter</au><au>Spiess, Hans Wolfgang</au><au>Wilhelm, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13C NMR Spectroscopy</atitle><jtitle>Macromolecular chemistry and physics</jtitle><addtitle>Macromol. Chem. Phys</addtitle><date>2006-02-24</date><risdate>2006</risdate><volume>207</volume><issue>4</issue><spage>382</spage><epage>395</epage><pages>382-395</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Quantitative branch determination in polyolefins by melt‐state NMR has been investigated paying particular attention to sensitivity per unit time. Comparison of spectra obtained using spectrometers operating at 700, 500 and 300 MHz 1H Larmor frequency, with 4 and 7 mm MAS probeheads, showed that the best sensitivity was achieved at 500 MHz using a 7 mm 13C1H optimised high‐temperature probehead. For materials available in large quantities static melt‐state NMR, using large‐diameter detection coils at 300 MHz, was shown to produce comparable results to melt‐state MAS measurements in less time. Artificial line broadening, introduced by FID truncation, was reduced by the use of π pulse‐train heteronuclear dipolar‐decoupling. This decoupling method, when combined with a higher duty‐cycle, allowed for the whole FID to be acquired. Optimised methods have been applied to the characterisation of short‐chain branching (SCB) in polyethylene‐ and poly(propylene)‐co‐α‐olefins with varying comonomer incorporation. Long‐chain branch (LCB) concentrations of 8 branches per 100 000 CH2 were quantified for an industrial ‘linear’ polyethylene in 13 h, with a signal‐to‐noise ratio of 10 for the α branch site used. The use of J‐coupling mediated polarisation transfer techniques were also shown to be viable for branch quantification in the melt‐state. An example of the time efficient quantification of very low branch contents in polyethylene using optimised 13C melt‐state NMR under magic‐angle spinning. Concentrations of 7–8 branches per 100 000 CH2 groups were determined in only 13 h.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/macp.200500422</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2006-02, Vol.207 (4), p.382-395
issn 1022-1352
1521-3935
language eng
recordid cdi_pascalfrancis_primary_17519374
source Wiley
subjects Applied sciences
branch
Exact sciences and technology
melt
NMR
Organic polymers
Physicochemistry of polymers
polyethylene
Properties and characterization
quantification
Structure, morphology and analysis
title Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13C NMR Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20and%20Application%20of%20Polyolefin%20Branch%20Quantification%20by%20Melt-State%2013C%20NMR%20Spectroscopy&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Klimke,%20Katja&rft.date=2006-02-24&rft.volume=207&rft.issue=4&rft.spage=382&rft.epage=395&rft.pages=382-395&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.200500422&rft_dat=%3Cistex_pasca%3Eark_67375_WNG_29RC5PCJ_Z%3C/istex_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1182-4034745a61c1fcf69a5a87e10768c119fd60868caf356d6bfbc3d2d089eb344f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true