Loading…
Combined pattern search and ranking and selection for simulation optimization
A new algorithm class is presented for optimization of stochastic simulation models. The algorithms, which combine generalized pattern search (GPS) with ranking and selection (R&S), require "black-box" simulation evaluations and are applicable to problems with mixed variables (continuo...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new algorithm class is presented for optimization of stochastic simulation models. The algorithms, which combine generalized pattern search (GPS) with ranking and selection (R&S), require "black-box" simulation evaluations and are applicable to problems with mixed variables (continuous, discrete numeric, and categorical). Implementation of the Mixed-variable Generalized Pattern Search with Ranking and Selection (MGPS-RS) algorithm with three different R&S procedures is demonstrated and tested on a small set of standard test functions. Results of this preliminary performance evaluation are summarized and compared with existing search methods. |
---|---|
DOI: | 10.5555/1161734.1161852 |