Loading…

Image retrieval based on feature weighting and relevance feedback

We present a relevance feedback model for CBIR, based on a feature weighting algorithm. The proposed model uses positive and negative items selected by the user to learn the importance of image features, then applies the obtained weights to define similarity measures corresponding to the user's...

Full description

Saved in:
Bibliographic Details
Main Authors: Kherfi, M.L., Ziou, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 692 Vol. 1
container_issue
container_start_page 689
container_title
container_volume 1
creator Kherfi, M.L.
Ziou, D.
description We present a relevance feedback model for CBIR, based on a feature weighting algorithm. The proposed model uses positive and negative items selected by the user to learn the importance of image features, then applies the obtained weights to define similarity measures corresponding to the user's perception. The basic principle of this work is to give more importance to features with a high likelihood and those which separate well between positive example (PE) classes and negative example (NE) classes. The proposed algorithm was validated separately and in the image retrieval context, and the experiments show that it contributes in improving retrieval effectiveness.
doi_str_mv 10.1109/ICIP.2004.1418848
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17611522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1418848</ieee_id><sourcerecordid>17611522</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-d655e7da18b5af99d62adc9541cead2ccfbc5d68ba3af687f06f6cc4b25e789a3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhc_wLb6A8RLLh5Td_Yrk2MpVgMFPei5THZn62oaSxIV_72RCp7ew_PMMPMKcQlyDiDLm2pZPc6VlGYOBhANHomJ0gg5WlMei6ksUGq01ugTMQGrVG4Q5ZmY9v2rlEqCholYVDvactbx0CX-pCarqeeQvbdZZBo-Os6-OG1fhtRuM2rDKDaj1noeOYea_Nu5OI3U9HzxlzPxvLp9Wt7n64e7arlY50lJO-TBWctFIMDaUizL4BQFX1oDniko72PtbXBYk6bosIjSRee9qdU4hiXpmbg-7N1T76mJ3XhF6jf7Lu2o-95A4eD3ydG7OniJmf_xoSL9A_AMWSk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image retrieval based on feature weighting and relevance feedback</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kherfi, M.L. ; Ziou, D.</creator><creatorcontrib>Kherfi, M.L. ; Ziou, D.</creatorcontrib><description>We present a relevance feedback model for CBIR, based on a feature weighting algorithm. The proposed model uses positive and negative items selected by the user to learn the importance of image features, then applies the obtained weights to define similarity measures corresponding to the user's perception. The basic principle of this work is to give more importance to features with a high likelihood and those which separate well between positive example (PE) classes and negative example (NE) classes. The proposed algorithm was validated separately and in the image retrieval context, and the experiments show that it contributes in improving retrieval effectiveness.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780385543</identifier><identifier>ISBN: 9780780385542</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2004.1418848</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science; control theory; systems ; Content based retrieval ; Exact sciences and technology ; Feedback ; Image databases ; Image retrieval ; Information retrieval ; Pattern recognition. Digital image processing. Computational geometry ; Radio frequency ; Spatial databases ; Support vector machine classification ; Support vector machines</subject><ispartof>2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.1, p.689-692 Vol. 1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1418848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1418848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17611522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kherfi, M.L.</creatorcontrib><creatorcontrib>Ziou, D.</creatorcontrib><title>Image retrieval based on feature weighting and relevance feedback</title><title>2004 International Conference on Image Processing, 2004. ICIP '04</title><addtitle>ICIP</addtitle><description>We present a relevance feedback model for CBIR, based on a feature weighting algorithm. The proposed model uses positive and negative items selected by the user to learn the importance of image features, then applies the obtained weights to define similarity measures corresponding to the user's perception. The basic principle of this work is to give more importance to features with a high likelihood and those which separate well between positive example (PE) classes and negative example (NE) classes. The proposed algorithm was validated separately and in the image retrieval context, and the experiments show that it contributes in improving retrieval effectiveness.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Content based retrieval</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Radio frequency</subject><subject>Spatial databases</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780385543</isbn><isbn>9780780385542</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkE1Lw0AQhhc_wLb6A8RLLh5Td_Yrk2MpVgMFPei5THZn62oaSxIV_72RCp7ew_PMMPMKcQlyDiDLm2pZPc6VlGYOBhANHomJ0gg5WlMei6ksUGq01ugTMQGrVG4Q5ZmY9v2rlEqCholYVDvactbx0CX-pCarqeeQvbdZZBo-Os6-OG1fhtRuM2rDKDaj1noeOYea_Nu5OI3U9HzxlzPxvLp9Wt7n64e7arlY50lJO-TBWctFIMDaUizL4BQFX1oDniko72PtbXBYk6bosIjSRee9qdU4hiXpmbg-7N1T76mJ3XhF6jf7Lu2o-95A4eD3ydG7OniJmf_xoSL9A_AMWSk</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kherfi, M.L.</creator><creator>Ziou, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Image retrieval based on feature weighting and relevance feedback</title><author>Kherfi, M.L. ; Ziou, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-d655e7da18b5af99d62adc9541cead2ccfbc5d68ba3af687f06f6cc4b25e789a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Content based retrieval</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Radio frequency</topic><topic>Spatial databases</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Kherfi, M.L.</creatorcontrib><creatorcontrib>Ziou, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kherfi, M.L.</au><au>Ziou, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image retrieval based on feature weighting and relevance feedback</atitle><btitle>2004 International Conference on Image Processing, 2004. ICIP '04</btitle><stitle>ICIP</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>689</spage><epage>692 Vol. 1</epage><pages>689-692 Vol. 1</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780385543</isbn><isbn>9780780385542</isbn><abstract>We present a relevance feedback model for CBIR, based on a feature weighting algorithm. The proposed model uses positive and negative items selected by the user to learn the importance of image features, then applies the obtained weights to define similarity measures corresponding to the user's perception. The basic principle of this work is to give more importance to features with a high likelihood and those which separate well between positive example (PE) classes and negative example (NE) classes. The proposed algorithm was validated separately and in the image retrieval context, and the experiments show that it contributes in improving retrieval effectiveness.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICIP.2004.1418848</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.1, p.689-692 Vol. 1
issn 1522-4880
2381-8549
language eng
recordid cdi_pascalfrancis_primary_17611522
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Bayesian methods
Computer science
control theory
systems
Content based retrieval
Exact sciences and technology
Feedback
Image databases
Image retrieval
Information retrieval
Pattern recognition. Digital image processing. Computational geometry
Radio frequency
Spatial databases
Support vector machine classification
Support vector machines
title Image retrieval based on feature weighting and relevance feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20retrieval%20based%20on%20feature%20weighting%20and%20relevance%20feedback&rft.btitle=2004%20International%20Conference%20on%20Image%20Processing,%202004.%20ICIP%20'04&rft.au=Kherfi,%20M.L.&rft.date=2004&rft.volume=1&rft.spage=689&rft.epage=692%20Vol.%201&rft.pages=689-692%20Vol.%201&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780385543&rft.isbn_list=9780780385542&rft_id=info:doi/10.1109/ICIP.2004.1418848&rft_dat=%3Cpascalfrancis_6IE%3E17611522%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i205t-d655e7da18b5af99d62adc9541cead2ccfbc5d68ba3af687f06f6cc4b25e789a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1418848&rfr_iscdi=true