Loading…
Simulation of carbon nanotube field-effect devices
Ab initio quantum mechanical numerical simulations have been used to study electronic transport in nanoscale electronic devices. We have developed a new code based on self-consistent density-functional tight-binding (DFTB) method and non-equilibrium Green's function (NEGF) formalism. Using this...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ab initio quantum mechanical numerical simulations have been used to study electronic transport in nanoscale electronic devices. We have developed a new code based on self-consistent density-functional tight-binding (DFTB) method and non-equilibrium Green's function (NEGF) formalism. Using this approach, we investigate the coherent transport properties of a long semiconducting CNT when the source-drain current is modulated by a coaxial gate. Exact boundary conditions for the electrostatic potential in the coaxial gate geometry are taken into account solving in real space a 3D Poisson equation. Results stress the importance of a good electrostatic-design of the gate contact to obtain the same field-effect modulation we have in conventional planar MOSFET. |
---|---|
DOI: | 10.1109/NANO.2004.1392232 |