Loading…

Multi-agent reinforcement learning: using macro actions to learn a mating task

Standard reinforcement learning methods are inefficient and often inadequate for learning cooperative multi-agent tasks. For these kinds of tasks the behavior of one agent strongly depends on dynamic interaction with other agents, not only with the interaction with a static environment as in standar...

Full description

Saved in:
Bibliographic Details
Main Authors: Elfwing, S., Uchibe, E., Doya, K., Christensen, H.I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3169 vol.4
container_issue
container_start_page 3164
container_title
container_volume 4
creator Elfwing, S.
Uchibe, E.
Doya, K.
Christensen, H.I.
description Standard reinforcement learning methods are inefficient and often inadequate for learning cooperative multi-agent tasks. For these kinds of tasks the behavior of one agent strongly depends on dynamic interaction with other agents, not only with the interaction with a static environment as in standard reinforcement learning. The success of the learning is therefore coupled to the agents' ability to predict the other agents behaviors. In this study we try to overcome this problem by adding a few simple macro actions, actions that are extended in time for more than one time step. The macro actions improve the learning by making search of the state space more effective and thereby making the behavior more predictable for the other agent. In this study we have considered a cooperative mating task, which is the first step towards our aim to perform embodied evolution, where the evolutionary selection process is an integrated part of the task. We show, in simulation and hardware, that in the case of learning without macro actions, the agents fail to learn a meaningful behavior. In contrast, for the learning with macro action the agents learn a good mating behavior in reasonable time, in both simulation and hardware.
doi_str_mv 10.1109/IROS.2004.1389904
format conference_proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18182947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1389904</ieee_id><sourcerecordid>oai_DiVA_org_kth_7565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1565-676b71d1337a66f8fe41d9ade5b78925be5d14e3d1d89c1de64e11aefdfa3d3d3</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhhdEUGofQLzJjVeSmulu9uBdqadCteDpNkyyk7o2Tcpuivj2rkR0ZuBn-L-ZgWHsFLIJQGYuF0-r58k0y8QEuDYmEwdsbJTOYnEtJFdHbBzCRxaDm1yAPGaPD_umdymuqe0TT66tO1_R9qdrCH3r2vVVsg9Rki1Wvkuw6l3XhqTvBiDBaPQ_fo9hc8IOa2wCjX91xF5vb17m9-lydbeYz5apg1zmqVSyVGCBc4VS1romAdagpbxU2kzzknILgrgFq00FlqQgAKTa1shtzBG7GPaGT9rty2Ln3Rb9V9GhK67d26zo_LrY9O-FiucifT7QOwwVNrXHtnLhbwg06KkRKnJnA-eI6N8efsm_AS9raso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-agent reinforcement learning: using macro actions to learn a mating task</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Elfwing, S. ; Uchibe, E. ; Doya, K. ; Christensen, H.I.</creator><creatorcontrib>Elfwing, S. ; Uchibe, E. ; Doya, K. ; Christensen, H.I.</creatorcontrib><description>Standard reinforcement learning methods are inefficient and often inadequate for learning cooperative multi-agent tasks. For these kinds of tasks the behavior of one agent strongly depends on dynamic interaction with other agents, not only with the interaction with a static environment as in standard reinforcement learning. The success of the learning is therefore coupled to the agents' ability to predict the other agents behaviors. In this study we try to overcome this problem by adding a few simple macro actions, actions that are extended in time for more than one time step. The macro actions improve the learning by making search of the state space more effective and thereby making the behavior more predictable for the other agent. In this study we have considered a cooperative mating task, which is the first step towards our aim to perform embodied evolution, where the evolutionary selection process is an integrated part of the task. We show, in simulation and hardware, that in the case of learning without macro actions, the agents fail to learn a meaningful behavior. In contrast, for the learning with macro action the agents learn a good mating behavior in reasonable time, in both simulation and hardware.</description><identifier>ISBN: 9780780384637</identifier><identifier>ISBN: 0780384636</identifier><identifier>DOI: 10.1109/IROS.2004.1389904</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Animals ; Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Control theory. Systems ; Datalogi ; Datavetenskap ; Exact sciences and technology ; Game theory ; Genetic algorithms ; Hardware ; Information technology ; Informationsteknik ; Learning ; Numerical analysis ; Robot kinematics ; Stochastic processes ; TECHNOLOGY ; TEKNIKVETENSKAP ; Testing</subject><ispartof>2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, Vol.4, p.3164-3169 vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1389904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1389904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18182947$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-7565$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Elfwing, S.</creatorcontrib><creatorcontrib>Uchibe, E.</creatorcontrib><creatorcontrib>Doya, K.</creatorcontrib><creatorcontrib>Christensen, H.I.</creatorcontrib><title>Multi-agent reinforcement learning: using macro actions to learn a mating task</title><title>2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566)</title><addtitle>IROS</addtitle><description>Standard reinforcement learning methods are inefficient and often inadequate for learning cooperative multi-agent tasks. For these kinds of tasks the behavior of one agent strongly depends on dynamic interaction with other agents, not only with the interaction with a static environment as in standard reinforcement learning. The success of the learning is therefore coupled to the agents' ability to predict the other agents behaviors. In this study we try to overcome this problem by adding a few simple macro actions, actions that are extended in time for more than one time step. The macro actions improve the learning by making search of the state space more effective and thereby making the behavior more predictable for the other agent. In this study we have considered a cooperative mating task, which is the first step towards our aim to perform embodied evolution, where the evolutionary selection process is an integrated part of the task. We show, in simulation and hardware, that in the case of learning without macro actions, the agents fail to learn a meaningful behavior. In contrast, for the learning with macro action the agents learn a good mating behavior in reasonable time, in both simulation and hardware.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Datalogi</subject><subject>Datavetenskap</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Genetic algorithms</subject><subject>Hardware</subject><subject>Information technology</subject><subject>Informationsteknik</subject><subject>Learning</subject><subject>Numerical analysis</subject><subject>Robot kinematics</subject><subject>Stochastic processes</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Testing</subject><isbn>9780780384637</isbn><isbn>0780384636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkNtKw0AQhhdEUGofQLzJjVeSmulu9uBdqadCteDpNkyyk7o2Tcpuivj2rkR0ZuBn-L-ZgWHsFLIJQGYuF0-r58k0y8QEuDYmEwdsbJTOYnEtJFdHbBzCRxaDm1yAPGaPD_umdymuqe0TT66tO1_R9qdrCH3r2vVVsg9Rki1Wvkuw6l3XhqTvBiDBaPQ_fo9hc8IOa2wCjX91xF5vb17m9-lydbeYz5apg1zmqVSyVGCBc4VS1romAdagpbxU2kzzknILgrgFq00FlqQgAKTa1shtzBG7GPaGT9rty2Ln3Rb9V9GhK67d26zo_LrY9O-FiucifT7QOwwVNrXHtnLhbwg06KkRKnJnA-eI6N8efsm_AS9raso</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Elfwing, S.</creator><creator>Uchibe, E.</creator><creator>Doya, K.</creator><creator>Christensen, H.I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D8V</scope></search><sort><creationdate>2004</creationdate><title>Multi-agent reinforcement learning: using macro actions to learn a mating task</title><author>Elfwing, S. ; Uchibe, E. ; Doya, K. ; Christensen, H.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1565-676b71d1337a66f8fe41d9ade5b78925be5d14e3d1d89c1de64e11aefdfa3d3d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Datalogi</topic><topic>Datavetenskap</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Genetic algorithms</topic><topic>Hardware</topic><topic>Information technology</topic><topic>Informationsteknik</topic><topic>Learning</topic><topic>Numerical analysis</topic><topic>Robot kinematics</topic><topic>Stochastic processes</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Elfwing, S.</creatorcontrib><creatorcontrib>Uchibe, E.</creatorcontrib><creatorcontrib>Doya, K.</creatorcontrib><creatorcontrib>Christensen, H.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elfwing, S.</au><au>Uchibe, E.</au><au>Doya, K.</au><au>Christensen, H.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-agent reinforcement learning: using macro actions to learn a mating task</atitle><btitle>2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566)</btitle><stitle>IROS</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>3164</spage><epage>3169 vol.4</epage><pages>3164-3169 vol.4</pages><isbn>9780780384637</isbn><isbn>0780384636</isbn><abstract>Standard reinforcement learning methods are inefficient and often inadequate for learning cooperative multi-agent tasks. For these kinds of tasks the behavior of one agent strongly depends on dynamic interaction with other agents, not only with the interaction with a static environment as in standard reinforcement learning. The success of the learning is therefore coupled to the agents' ability to predict the other agents behaviors. In this study we try to overcome this problem by adding a few simple macro actions, actions that are extended in time for more than one time step. The macro actions improve the learning by making search of the state space more effective and thereby making the behavior more predictable for the other agent. In this study we have considered a cooperative mating task, which is the first step towards our aim to perform embodied evolution, where the evolutionary selection process is an integrated part of the task. We show, in simulation and hardware, that in the case of learning without macro actions, the agents fail to learn a meaningful behavior. In contrast, for the learning with macro action the agents learn a good mating behavior in reasonable time, in both simulation and hardware.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IROS.2004.1389904</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780384637
ispartof 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, Vol.4, p.3164-3169 vol.4
issn
language eng
recordid cdi_pascalfrancis_primary_18182947
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animals
Applied sciences
Artificial intelligence
Computer science
Computer science
control theory
systems
Control theory. Systems
Datalogi
Datavetenskap
Exact sciences and technology
Game theory
Genetic algorithms
Hardware
Information technology
Informationsteknik
Learning
Numerical analysis
Robot kinematics
Stochastic processes
TECHNOLOGY
TEKNIKVETENSKAP
Testing
title Multi-agent reinforcement learning: using macro actions to learn a mating task
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-agent%20reinforcement%20learning:%20using%20macro%20actions%20to%20learn%20a%20mating%20task&rft.btitle=2004%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)%20(IEEE%20Cat.%20No.04CH37566)&rft.au=Elfwing,%20S.&rft.date=2004&rft.volume=4&rft.spage=3164&rft.epage=3169%20vol.4&rft.pages=3164-3169%20vol.4&rft.isbn=9780780384637&rft.isbn_list=0780384636&rft_id=info:doi/10.1109/IROS.2004.1389904&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_kth_7565%3C/swepub_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1565-676b71d1337a66f8fe41d9ade5b78925be5d14e3d1d89c1de64e11aefdfa3d3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1389904&rfr_iscdi=true