Loading…
Real-time adaptive control for haptic telemanipulation with Kalman active observers
This paper discusses robotic telemanipulation with Kalman active observers and online stiffness estimation. Operational space techniques, feedback linearization, discrete state space methods, augmented states, and stochastic design are used to control a robotic manipulator with a haptic device. Stif...
Saved in:
Published in: | IEEE transactions on robotics 2006-10, Vol.22 (5), p.987-999 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper discusses robotic telemanipulation with Kalman active observers and online stiffness estimation. Operational space techniques, feedback linearization, discrete state space methods, augmented states, and stochastic design are used to control a robotic manipulator with a haptic device. Stiffness estimation only based on force data (measured, desired, and estimated forces) is proposed, avoiding explicit position information. Stability and robustness to stiffness errors are discussed, as well as real-time adaptation techniques. Telepresence is analyzed. Experiments show high performance in contact with soft and hard surfaces |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2006.878787 |