Loading…
MOSAIC: A Multi-Feature Access Method for Large Image Databases
In this paper, we present an image retrieval system that made used of an index structure, called MOSAIC to facilitate speedy retrieval of images. MOSIAC is a multi-tier structure that indexes multiple features of an image, with each tier dealing with one feature. Our current implementation of MOSAIC...
Saved in:
Main Authors: | , |
---|---|
Format: | Book Chapter |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 871 |
container_issue | |
container_start_page | 862 |
container_title | |
container_volume | 1677 |
creator | Goh, Shen-Tat Tan, Kian-Lee |
description | In this paper, we present an image retrieval system that made used of an index structure, called MOSAIC to facilitate speedy retrieval of images. MOSIAC is a multi-tier structure that indexes multiple features of an image, with each tier dealing with one feature. Our current implementation of MOSAIC organizes images based on color, size and spatial location of clusters extracted from the images. We evaluated MOSAIC, and our results show that it is able to prune the search space and retrieve relevant images quickly. |
doi_str_mv | 10.1007/3-540-48309-8_81 |
format | book_chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1826192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6485640_933_881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2271-e8169d62f1e1086b348a664279274f8c4da524dbae04814b395ea8f343cc061e3</originalsourceid><addsrcrecordid>eNqNkD1PAzEMhsOnKIWd8QbWQBLncgkLqspXpVYMwBz5Ul8plF5JrgP_nrTlB-DBlvz6seyXsQsprqQQ1TXwUguuLQjHrbdyj51C7mwbdp_1pJGSA2h3sBOM0Vk7ZD0BQnFXaThmPVfasnROmhN2ntKHyAFKae167Hby_DIYDW-KQTFZL7o5fyDs1pGKQQiUUjGh7r2dFk0bizHGGRWjL8z5DjusMVE6Y0cNLhKd_9U-e3u4fx0-8fHz42g4GPOVUpXkZKVxU6MaSVJYU4O2mE9VlVOVbmzQUyyVntZI-TWpa3AloW1AQwjCSII-u9ztXWEKuGgiLsM8-VWcf2H88dIqI53KY1e7sZSV5Yyir9v2M3kp_MZODz575Lfu-Y2dGdB_e2P7vabUedoQgZZdxEV4x1VHMXmjbWky6QC83WLwHwxEpZwuva0yJeAXC06Bbw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072945_87_880</pqid></control><display><type>book_chapter</type><title>MOSAIC: A Multi-Feature Access Method for Large Image Databases</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goh, Shen-Tat ; Tan, Kian-Lee</creator><contributor>Hartmanis, J ; Bench-Capon, Trevor ; Goos, G ; Soda, Giovanni ; Tjoa, A. Min ; Tjoa, A. Min ; Leeuwen, J. van ; Soda, Giovanni ; Soda, Giovanni ; Bench-Capon, Trevor ; Tjoa, A. Min ; Soda, Giovanni ; Bench-Capon, Trevor J.M. ; Tjoa, A Min</contributor><creatorcontrib>Goh, Shen-Tat ; Tan, Kian-Lee ; Hartmanis, J ; Bench-Capon, Trevor ; Goos, G ; Soda, Giovanni ; Tjoa, A. Min ; Tjoa, A. Min ; Leeuwen, J. van ; Soda, Giovanni ; Soda, Giovanni ; Bench-Capon, Trevor ; Tjoa, A. Min ; Soda, Giovanni ; Bench-Capon, Trevor J.M. ; Tjoa, A Min</creatorcontrib><description>In this paper, we present an image retrieval system that made used of an index structure, called MOSAIC to facilitate speedy retrieval of images. MOSIAC is a multi-tier structure that indexes multiple features of an image, with each tier dealing with one feature. Our current implementation of MOSAIC organizes images based on color, size and spatial location of clusters extracted from the images. We evaluated MOSAIC, and our results show that it is able to prune the search space and retrieve relevant images quickly.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540664483</identifier><identifier>ISBN: 9783540664482</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540483098</identifier><identifier>EISBN: 9783540483090</identifier><identifier>DOI: 10.1007/3-540-48309-8_81</identifier><identifier>OCLC: 958559916</identifier><identifier>OCLC: 1245673570</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Image Retrieval ; Index Structure ; Information systems. Data bases ; Memory organisation. Data processing ; Mosaic Structure ; Range Query ; Relevant Image ; Software</subject><ispartof>Database and Expert Systems Applications, 1999, Vol.1677, p.862-871</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072945-l.jpg</thumbnail><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1826192$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hartmanis, J</contributor><contributor>Bench-Capon, Trevor</contributor><contributor>Goos, G</contributor><contributor>Soda, Giovanni</contributor><contributor>Tjoa, A. Min</contributor><contributor>Tjoa, A. Min</contributor><contributor>Leeuwen, J. van</contributor><contributor>Soda, Giovanni</contributor><contributor>Soda, Giovanni</contributor><contributor>Bench-Capon, Trevor</contributor><contributor>Tjoa, A. Min</contributor><contributor>Soda, Giovanni</contributor><contributor>Bench-Capon, Trevor J.M.</contributor><contributor>Tjoa, A Min</contributor><creatorcontrib>Goh, Shen-Tat</creatorcontrib><creatorcontrib>Tan, Kian-Lee</creatorcontrib><title>MOSAIC: A Multi-Feature Access Method for Large Image Databases</title><title>Database and Expert Systems Applications</title><description>In this paper, we present an image retrieval system that made used of an index structure, called MOSAIC to facilitate speedy retrieval of images. MOSIAC is a multi-tier structure that indexes multiple features of an image, with each tier dealing with one feature. Our current implementation of MOSAIC organizes images based on color, size and spatial location of clusters extracted from the images. We evaluated MOSAIC, and our results show that it is able to prune the search space and retrieve relevant images quickly.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image Retrieval</subject><subject>Index Structure</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Mosaic Structure</subject><subject>Range Query</subject><subject>Relevant Image</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540664483</isbn><isbn>9783540664482</isbn><isbn>3540483098</isbn><isbn>9783540483090</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkD1PAzEMhsOnKIWd8QbWQBLncgkLqspXpVYMwBz5Ul8plF5JrgP_nrTlB-DBlvz6seyXsQsprqQQ1TXwUguuLQjHrbdyj51C7mwbdp_1pJGSA2h3sBOM0Vk7ZD0BQnFXaThmPVfasnROmhN2ntKHyAFKae167Hby_DIYDW-KQTFZL7o5fyDs1pGKQQiUUjGh7r2dFk0bizHGGRWjL8z5DjusMVE6Y0cNLhKd_9U-e3u4fx0-8fHz42g4GPOVUpXkZKVxU6MaSVJYU4O2mE9VlVOVbmzQUyyVntZI-TWpa3AloW1AQwjCSII-u9ztXWEKuGgiLsM8-VWcf2H88dIqI53KY1e7sZSV5Yyir9v2M3kp_MZODz575Lfu-Y2dGdB_e2P7vabUedoQgZZdxEV4x1VHMXmjbWky6QC83WLwHwxEpZwuva0yJeAXC06Bbw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Goh, Shen-Tat</creator><creator>Tan, Kian-Lee</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>MOSAIC: A Multi-Feature Access Method for Large Image Databases</title><author>Goh, Shen-Tat ; Tan, Kian-Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2271-e8169d62f1e1086b348a664279274f8c4da524dbae04814b395ea8f343cc061e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image Retrieval</topic><topic>Index Structure</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Mosaic Structure</topic><topic>Range Query</topic><topic>Relevant Image</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Shen-Tat</creatorcontrib><creatorcontrib>Tan, Kian-Lee</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Shen-Tat</au><au>Tan, Kian-Lee</au><au>Hartmanis, J</au><au>Bench-Capon, Trevor</au><au>Goos, G</au><au>Soda, Giovanni</au><au>Tjoa, A. Min</au><au>Tjoa, A. Min</au><au>Leeuwen, J. van</au><au>Soda, Giovanni</au><au>Soda, Giovanni</au><au>Bench-Capon, Trevor</au><au>Tjoa, A. Min</au><au>Soda, Giovanni</au><au>Bench-Capon, Trevor J.M.</au><au>Tjoa, A Min</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>MOSAIC: A Multi-Feature Access Method for Large Image Databases</atitle><btitle>Database and Expert Systems Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><volume>1677</volume><spage>862</spage><epage>871</epage><pages>862-871</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540664483</isbn><isbn>9783540664482</isbn><eisbn>3540483098</eisbn><eisbn>9783540483090</eisbn><abstract>In this paper, we present an image retrieval system that made used of an index structure, called MOSAIC to facilitate speedy retrieval of images. MOSIAC is a multi-tier structure that indexes multiple features of an image, with each tier dealing with one feature. Our current implementation of MOSAIC organizes images based on color, size and spatial location of clusters extracted from the images. We evaluated MOSAIC, and our results show that it is able to prune the search space and retrieve relevant images quickly.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48309-8_81</doi><oclcid>958559916</oclcid><oclcid>1245673570</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Database and Expert Systems Applications, 1999, Vol.1677, p.862-871 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1826192 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Image Retrieval Index Structure Information systems. Data bases Memory organisation. Data processing Mosaic Structure Range Query Relevant Image Software |
title | MOSAIC: A Multi-Feature Access Method for Large Image Databases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=MOSAIC:%20A%20Multi-Feature%20Access%20Method%20for%20Large%20Image%20Databases&rft.btitle=Database%20and%20Expert%20Systems%20Applications&rft.au=Goh,%20Shen-Tat&rft.date=1999&rft.volume=1677&rft.spage=862&rft.epage=871&rft.pages=862-871&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540664483&rft.isbn_list=9783540664482&rft_id=info:doi/10.1007/3-540-48309-8_81&rft.eisbn=3540483098&rft.eisbn_list=9783540483090&rft_dat=%3Cproquest_pasca%3EEBC6485640_933_881%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2271-e8169d62f1e1086b348a664279274f8c4da524dbae04814b395ea8f343cc061e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=EBC3072945_87_880&rft_id=info:pmid/&rfr_iscdi=true |