Loading…
Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs
Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essen...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2006-12, Vol.28 (12), p.1892-1901 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173 |
container_end_page | 1901 |
container_issue | 12 |
container_start_page | 1892 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 28 |
creator | Teoh, A.B.J. Goh, A. Ngo, D.C.L. |
description | Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs |
doi_str_mv | 10.1109/TPAMI.2006.250 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18271143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717451</ieee_id><sourcerecordid>2342934821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</originalsourceid><addsrcrecordid>eNp9kc9rFDEUgIModq1evQgSBPU0a14yP5LjWtQudPEH9Ty8STI2ZSbZJjOH9a832x2oePCUBL73Bd5HyEtgawCmPlx_2-y2a85YveYVe0RWoIQqRCXUY7JiUPNCSi7PyLOUbhmDsmLiKTmDBpgUdbUi_gd6E0a6m4fJpT1qS7_P6Cf3GycXPMVE0dONx-EwOU13Vt-gd2mkfYj0owuXmG6c_0VDf3yNdoqZykq6eLfGZtl0oFu_n6f0nDzpcUj2xXKek5-fP11fXBZXX79sLzZXha5ATAWUnRKVkbIGZjphOs553UDDG24RLUqlO2kN59bYSooGjOp6oSX0mO_QiHPy_uTdx3A32zS1o0vaDgN6G-bUSlWD4k1ZZvLdf8laQinVvfLNP-BtmGNeTLbVVQPAyyO0PkE6hpSi7dt9dCPGQwusPQZr74O1x2BtDpYHXi_WuRutecCXQhl4uwCYNA59RK9deuAkz1-XInOvTpyz1v6tacq80j_53KZL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865711247</pqid></control><display><type>article</type><title>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Teoh, A.B.J. ; Goh, A. ; Ngo, D.C.L.</creator><creatorcontrib>Teoh, A.B.J. ; Goh, A. ; Ngo, D.C.L.</creatorcontrib><description>Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.250</identifier><identifier>PMID: 17108365</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial Intelligence ; BioHashing ; Bioinformatics ; Biometrics ; Biometry - methods ; Cancellable biometrics ; Computer science; control theory; systems ; Computer Security ; Computer systems and distributed systems. User interface ; Cryptography ; Data Compression - methods ; Data Interpretation, Statistical ; Database Management Systems ; Databases, Factual ; Exact sciences and technology ; Face - anatomy & histology ; face recognition ; Fingerprint recognition ; Humans ; Image Interpretation, Computer-Assisted - methods ; Intelligence ; Iris ; Mathematical analysis ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Passwords ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Polynomials ; Protection ; Quantization ; random multispace quantization ; Recognition ; Security ; Software ; Testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-12, Vol.28 (12), p.1892-1901</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</citedby><cites>FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18271143$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17108365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teoh, A.B.J.</creatorcontrib><creatorcontrib>Goh, A.</creatorcontrib><creatorcontrib>Ngo, D.C.L.</creatorcontrib><title>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>BioHashing</subject><subject>Bioinformatics</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Cancellable biometrics</subject><subject>Computer science; control theory; systems</subject><subject>Computer Security</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Cryptography</subject><subject>Data Compression - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Database Management Systems</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy & histology</subject><subject>face recognition</subject><subject>Fingerprint recognition</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Intelligence</subject><subject>Iris</subject><subject>Mathematical analysis</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Passwords</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polynomials</subject><subject>Protection</subject><subject>Quantization</subject><subject>random multispace quantization</subject><subject>Recognition</subject><subject>Security</subject><subject>Software</subject><subject>Testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc9rFDEUgIModq1evQgSBPU0a14yP5LjWtQudPEH9Ty8STI2ZSbZJjOH9a832x2oePCUBL73Bd5HyEtgawCmPlx_2-y2a85YveYVe0RWoIQqRCXUY7JiUPNCSi7PyLOUbhmDsmLiKTmDBpgUdbUi_gd6E0a6m4fJpT1qS7_P6Cf3GycXPMVE0dONx-EwOU13Vt-gd2mkfYj0owuXmG6c_0VDf3yNdoqZykq6eLfGZtl0oFu_n6f0nDzpcUj2xXKek5-fP11fXBZXX79sLzZXha5ATAWUnRKVkbIGZjphOs553UDDG24RLUqlO2kN59bYSooGjOp6oSX0mO_QiHPy_uTdx3A32zS1o0vaDgN6G-bUSlWD4k1ZZvLdf8laQinVvfLNP-BtmGNeTLbVVQPAyyO0PkE6hpSi7dt9dCPGQwusPQZr74O1x2BtDpYHXi_WuRutecCXQhl4uwCYNA59RK9deuAkz1-XInOvTpyz1v6tacq80j_53KZL</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Teoh, A.B.J.</creator><creator>Goh, A.</creator><creator>Ngo, D.C.L.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061201</creationdate><title>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</title><author>Teoh, A.B.J. ; Goh, A. ; Ngo, D.C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>BioHashing</topic><topic>Bioinformatics</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Cancellable biometrics</topic><topic>Computer science; control theory; systems</topic><topic>Computer Security</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Cryptography</topic><topic>Data Compression - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Database Management Systems</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy & histology</topic><topic>face recognition</topic><topic>Fingerprint recognition</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Intelligence</topic><topic>Iris</topic><topic>Mathematical analysis</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Passwords</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polynomials</topic><topic>Protection</topic><topic>Quantization</topic><topic>random multispace quantization</topic><topic>Recognition</topic><topic>Security</topic><topic>Software</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teoh, A.B.J.</creatorcontrib><creatorcontrib>Goh, A.</creatorcontrib><creatorcontrib>Ngo, D.C.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teoh, A.B.J.</au><au>Goh, A.</au><au>Ngo, D.C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>28</volume><issue>12</issue><spage>1892</spage><epage>1901</epage><pages>1892-1901</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>17108365</pmid><doi>10.1109/TPAMI.2006.250</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2006-12, Vol.28 (12), p.1892-1901 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pascalfrancis_primary_18271143 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial Intelligence BioHashing Bioinformatics Biometrics Biometry - methods Cancellable biometrics Computer science control theory systems Computer Security Computer systems and distributed systems. User interface Cryptography Data Compression - methods Data Interpretation, Statistical Database Management Systems Databases, Factual Exact sciences and technology Face - anatomy & histology face recognition Fingerprint recognition Humans Image Interpretation, Computer-Assisted - methods Intelligence Iris Mathematical analysis Memory and file management (including protection and security) Memory organisation. Data processing Passwords Pattern analysis Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Polynomials Protection Quantization random multispace quantization Recognition Security Software Testing |
title | Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Multispace%20Quantization%20as%20an%20Analytic%20Mechanism%20for%20BioHashing%20of%20Biometric%20and%20Random%20Identity%20Inputs&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Teoh,%20A.B.J.&rft.date=2006-12-01&rft.volume=28&rft.issue=12&rft.spage=1892&rft.epage=1901&rft.pages=1892-1901&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.250&rft_dat=%3Cproquest_pasca%3E2342934821%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865711247&rft_id=info:pmid/17108365&rft_ieee_id=1717451&rfr_iscdi=true |