Loading…

Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs

Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2006-12, Vol.28 (12), p.1892-1901
Main Authors: Teoh, A.B.J., Goh, A., Ngo, D.C.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173
cites cdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173
container_end_page 1901
container_issue 12
container_start_page 1892
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Teoh, A.B.J.
Goh, A.
Ngo, D.C.L.
description Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs
doi_str_mv 10.1109/TPAMI.2006.250
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18271143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717451</ieee_id><sourcerecordid>2342934821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</originalsourceid><addsrcrecordid>eNp9kc9rFDEUgIModq1evQgSBPU0a14yP5LjWtQudPEH9Ty8STI2ZSbZJjOH9a832x2oePCUBL73Bd5HyEtgawCmPlx_2-y2a85YveYVe0RWoIQqRCXUY7JiUPNCSi7PyLOUbhmDsmLiKTmDBpgUdbUi_gd6E0a6m4fJpT1qS7_P6Cf3GycXPMVE0dONx-EwOU13Vt-gd2mkfYj0owuXmG6c_0VDf3yNdoqZykq6eLfGZtl0oFu_n6f0nDzpcUj2xXKek5-fP11fXBZXX79sLzZXha5ATAWUnRKVkbIGZjphOs553UDDG24RLUqlO2kN59bYSooGjOp6oSX0mO_QiHPy_uTdx3A32zS1o0vaDgN6G-bUSlWD4k1ZZvLdf8laQinVvfLNP-BtmGNeTLbVVQPAyyO0PkE6hpSi7dt9dCPGQwusPQZr74O1x2BtDpYHXi_WuRutecCXQhl4uwCYNA59RK9deuAkz1-XInOvTpyz1v6tacq80j_53KZL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865711247</pqid></control><display><type>article</type><title>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Teoh, A.B.J. ; Goh, A. ; Ngo, D.C.L.</creator><creatorcontrib>Teoh, A.B.J. ; Goh, A. ; Ngo, D.C.L.</creatorcontrib><description>Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.250</identifier><identifier>PMID: 17108365</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial Intelligence ; BioHashing ; Bioinformatics ; Biometrics ; Biometry - methods ; Cancellable biometrics ; Computer science; control theory; systems ; Computer Security ; Computer systems and distributed systems. User interface ; Cryptography ; Data Compression - methods ; Data Interpretation, Statistical ; Database Management Systems ; Databases, Factual ; Exact sciences and technology ; Face - anatomy &amp; histology ; face recognition ; Fingerprint recognition ; Humans ; Image Interpretation, Computer-Assisted - methods ; Intelligence ; Iris ; Mathematical analysis ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Passwords ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Polynomials ; Protection ; Quantization ; random multispace quantization ; Recognition ; Security ; Software ; Testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-12, Vol.28 (12), p.1892-1901</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</citedby><cites>FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18271143$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17108365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teoh, A.B.J.</creatorcontrib><creatorcontrib>Goh, A.</creatorcontrib><creatorcontrib>Ngo, D.C.L.</creatorcontrib><title>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>BioHashing</subject><subject>Bioinformatics</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Cancellable biometrics</subject><subject>Computer science; control theory; systems</subject><subject>Computer Security</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Cryptography</subject><subject>Data Compression - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Database Management Systems</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy &amp; histology</subject><subject>face recognition</subject><subject>Fingerprint recognition</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Intelligence</subject><subject>Iris</subject><subject>Mathematical analysis</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Passwords</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polynomials</subject><subject>Protection</subject><subject>Quantization</subject><subject>random multispace quantization</subject><subject>Recognition</subject><subject>Security</subject><subject>Software</subject><subject>Testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc9rFDEUgIModq1evQgSBPU0a14yP5LjWtQudPEH9Ty8STI2ZSbZJjOH9a832x2oePCUBL73Bd5HyEtgawCmPlx_2-y2a85YveYVe0RWoIQqRCXUY7JiUPNCSi7PyLOUbhmDsmLiKTmDBpgUdbUi_gd6E0a6m4fJpT1qS7_P6Cf3GycXPMVE0dONx-EwOU13Vt-gd2mkfYj0owuXmG6c_0VDf3yNdoqZykq6eLfGZtl0oFu_n6f0nDzpcUj2xXKek5-fP11fXBZXX79sLzZXha5ATAWUnRKVkbIGZjphOs553UDDG24RLUqlO2kN59bYSooGjOp6oSX0mO_QiHPy_uTdx3A32zS1o0vaDgN6G-bUSlWD4k1ZZvLdf8laQinVvfLNP-BtmGNeTLbVVQPAyyO0PkE6hpSi7dt9dCPGQwusPQZr74O1x2BtDpYHXi_WuRutecCXQhl4uwCYNA59RK9deuAkz1-XInOvTpyz1v6tacq80j_53KZL</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Teoh, A.B.J.</creator><creator>Goh, A.</creator><creator>Ngo, D.C.L.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061201</creationdate><title>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</title><author>Teoh, A.B.J. ; Goh, A. ; Ngo, D.C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>BioHashing</topic><topic>Bioinformatics</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Cancellable biometrics</topic><topic>Computer science; control theory; systems</topic><topic>Computer Security</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Cryptography</topic><topic>Data Compression - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Database Management Systems</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy &amp; histology</topic><topic>face recognition</topic><topic>Fingerprint recognition</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Intelligence</topic><topic>Iris</topic><topic>Mathematical analysis</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Passwords</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polynomials</topic><topic>Protection</topic><topic>Quantization</topic><topic>random multispace quantization</topic><topic>Recognition</topic><topic>Security</topic><topic>Software</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teoh, A.B.J.</creatorcontrib><creatorcontrib>Goh, A.</creatorcontrib><creatorcontrib>Ngo, D.C.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teoh, A.B.J.</au><au>Goh, A.</au><au>Ngo, D.C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>28</volume><issue>12</issue><spage>1892</spage><epage>1901</epage><pages>1892-1901</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>17108365</pmid><doi>10.1109/TPAMI.2006.250</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-12, Vol.28 (12), p.1892-1901
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pascalfrancis_primary_18271143
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial Intelligence
BioHashing
Bioinformatics
Biometrics
Biometry - methods
Cancellable biometrics
Computer science
control theory
systems
Computer Security
Computer systems and distributed systems. User interface
Cryptography
Data Compression - methods
Data Interpretation, Statistical
Database Management Systems
Databases, Factual
Exact sciences and technology
Face - anatomy & histology
face recognition
Fingerprint recognition
Humans
Image Interpretation, Computer-Assisted - methods
Intelligence
Iris
Mathematical analysis
Memory and file management (including protection and security)
Memory organisation. Data processing
Passwords
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Polynomials
Protection
Quantization
random multispace quantization
Recognition
Security
Software
Testing
title Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Multispace%20Quantization%20as%20an%20Analytic%20Mechanism%20for%20BioHashing%20of%20Biometric%20and%20Random%20Identity%20Inputs&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Teoh,%20A.B.J.&rft.date=2006-12-01&rft.volume=28&rft.issue=12&rft.spage=1892&rft.epage=1901&rft.pages=1892-1901&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.250&rft_dat=%3Cproquest_pasca%3E2342934821%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-14b935d88610db3db2226717272eaaea89cb8ed22ede58371d9bf3c81fa71d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865711247&rft_id=info:pmid/17108365&rft_ieee_id=1717451&rfr_iscdi=true