Loading…

CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles

Calcium oxide can be an effective sorbent to separate CO2 at high temperatures. When coupled with a calcination step to produce pure CO2, the carbonation reaction is the basis for several high-temperature CO2 capture systems. The evolution with cycling of the capture capacity of CaO derived from nat...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2006-12, Vol.45 (26), p.8846-8851
Main Authors: Grasa, Gemma S, Abanades, J. Carlos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8851
container_issue 26
container_start_page 8846
container_title Industrial & engineering chemistry research
container_volume 45
creator Grasa, Gemma S
Abanades, J. Carlos
description Calcium oxide can be an effective sorbent to separate CO2 at high temperatures. When coupled with a calcination step to produce pure CO2, the carbonation reaction is the basis for several high-temperature CO2 capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T > 950 °C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7−8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge rates in the system. A semiempirical equation has been proposed to describe sorbent conversion with the number of cycles based on these new long data series.
doi_str_mv 10.1021/ie0606946
format article
fullrecord <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18352479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_KC0N0ZJ0_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-ae47ed26fbe8af7685af1435996e07e30a40bf3ab6273c676c28a1b645d2416d3</originalsourceid><addsrcrecordid>eNpFUEtLw0AYXETBWj34D3LxGPvte3PU4DtYofXiZfmy3cjWmpTdFOy_tyVSTzPMDAMzhFxSuKbA6CR4UKAKoY7IiEoGuQQhj8kIjDG5NEaekrOUlgAgpRAjUpVTlpW47jfR7xFd6LdZ1-z4NAttVnXtZzbzMfg0qLHuWuxD105KXLkw8KzcupVP5-SkwVXyF384Ju_3d_PyMa-mD0_lTZUjl6rP0QvtF0w1tTfYaGUkNlRwWRTKg_YcUEDdcKwV09wprRwzSGsl5IIJqhZ8TK6G3jUmh6smYutCsusYvjFuLTVcMqGLXS4fciH1_ufgY_yySnMt7fxtZl9KeIWPZ7C3_73okl12m9juVlgKdn-tPVzLfwHjZ2ht</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Grasa, Gemma S ; Abanades, J. Carlos</creator><creatorcontrib>Grasa, Gemma S ; Abanades, J. Carlos</creatorcontrib><description>Calcium oxide can be an effective sorbent to separate CO2 at high temperatures. When coupled with a calcination step to produce pure CO2, the carbonation reaction is the basis for several high-temperature CO2 capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T &gt; 950 °C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7−8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge rates in the system. A semiempirical equation has been proposed to describe sorbent conversion with the number of cycles based on these new long data series.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie0606946</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Industrial &amp; engineering chemistry research, 2006-12, Vol.45 (26), p.8846-8851</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18352479$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grasa, Gemma S</creatorcontrib><creatorcontrib>Abanades, J. Carlos</creatorcontrib><title>CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Calcium oxide can be an effective sorbent to separate CO2 at high temperatures. When coupled with a calcination step to produce pure CO2, the carbonation reaction is the basis for several high-temperature CO2 capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T &gt; 950 °C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7−8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge rates in the system. A semiempirical equation has been proposed to describe sorbent conversion with the number of cycles based on these new long data series.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFUEtLw0AYXETBWj34D3LxGPvte3PU4DtYofXiZfmy3cjWmpTdFOy_tyVSTzPMDAMzhFxSuKbA6CR4UKAKoY7IiEoGuQQhj8kIjDG5NEaekrOUlgAgpRAjUpVTlpW47jfR7xFd6LdZ1-z4NAttVnXtZzbzMfg0qLHuWuxD105KXLkw8KzcupVP5-SkwVXyF384Ju_3d_PyMa-mD0_lTZUjl6rP0QvtF0w1tTfYaGUkNlRwWRTKg_YcUEDdcKwV09wprRwzSGsl5IIJqhZ8TK6G3jUmh6smYutCsusYvjFuLTVcMqGLXS4fciH1_ufgY_yySnMt7fxtZl9KeIWPZ7C3_73okl12m9juVlgKdn-tPVzLfwHjZ2ht</recordid><startdate>20061220</startdate><enddate>20061220</enddate><creator>Grasa, Gemma S</creator><creator>Abanades, J. Carlos</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>20061220</creationdate><title>CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles</title><author>Grasa, Gemma S ; Abanades, J. Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-ae47ed26fbe8af7685af1435996e07e30a40bf3ab6273c676c28a1b645d2416d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grasa, Gemma S</creatorcontrib><creatorcontrib>Abanades, J. Carlos</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grasa, Gemma S</au><au>Abanades, J. Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2006-12-20</date><risdate>2006</risdate><volume>45</volume><issue>26</issue><spage>8846</spage><epage>8851</epage><pages>8846-8851</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Calcium oxide can be an effective sorbent to separate CO2 at high temperatures. When coupled with a calcination step to produce pure CO2, the carbonation reaction is the basis for several high-temperature CO2 capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T &gt; 950 °C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7−8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge rates in the system. A semiempirical equation has been proposed to describe sorbent conversion with the number of cycles based on these new long data series.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie0606946</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2006-12, Vol.45 (26), p.8846-8851
issn 0888-5885
1520-5045
language eng
recordid cdi_pascalfrancis_primary_18352479
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Chemical engineering
Exact sciences and technology
title CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Capture%20Capacity%20of%20CaO%20in%20Long%20Series%20of%20Carbonation/Calcination%20Cycles&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Grasa,%20Gemma%20S&rft.date=2006-12-20&rft.volume=45&rft.issue=26&rft.spage=8846&rft.epage=8851&rft.pages=8846-8851&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie0606946&rft_dat=%3Cistex_pasca%3Eark_67375_TPS_KC0N0ZJ0_B%3C/istex_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a356t-ae47ed26fbe8af7685af1435996e07e30a40bf3ab6273c676c28a1b645d2416d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true