Loading…
Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications
Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their...
Saved in:
Published in: | Journal of microelectromechanical systems 2006-12, Vol.15 (6), p.1789-1794 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3 |
container_end_page | 1794 |
container_issue | 6 |
container_start_page | 1789 |
container_title | Journal of microelectromechanical systems |
container_volume | 15 |
creator | Kale, N.S. Rao, V.R. |
description | Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications |
doi_str_mv | 10.1109/JMEMS.2006.886031 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18364282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4020272</ieee_id><sourcerecordid>889413742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVJoYmbHxC6EYGSbsbVlTR6LI3jpCl5LNKshUYjFYWJxpXGgfz7yrVJoIssLrpI3zn3ioPQCZA5ANHff96sbu7nlBAxV0oQBh_QIWgODYFWHdSetLKR0MpP6KiUR0KAcyUO0e25L_F3wjb1-MJ2OTo7xTHhq1I2vuCY8CKEmOL0gpc2TXHwzz4XHMaMuzhuh-LFej3sZeUz-hjsUPzx_pyhh4vVr-WP5vru8mq5uG4cU3JqgGtHtdCB9RY4a4H1oQ-W9J0VnQYnWRChc95DvQkgOtcyqTTvO0ZJFbEZOtv5rvP4py46madYnB8Gm_y4KUZVGJjktJLf3iVBSKBcayUqevof-jhucqr_MBooBcZrzRDsIJfHUrIPZp3jk80vBojZRmH-RWG2UZhdFFXzdW9si7NDyDa5WN6EiglO1XbXLzsueu9fnzmhhErK_gJyfpFN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912213421</pqid></control><display><type>article</type><title>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</title><source>IEEE Xplore (Online service)</source><creator>Kale, N.S. ; Rao, V.R.</creator><creatorcontrib>Kale, N.S. ; Rao, V.R.</creatorcontrib><description>Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2006.886031</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Affinity cantilevers ; antibody immobilization ; bioMEMS ; Capacitive sensors ; Chemical vapor deposition ; Deflection ; Design engineering ; Detection ; Exact sciences and technology ; Fabrication ; Guidelines ; hotwire CVD ; Immune system ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Markers ; Mechanical instruments, equipment and techniques ; Micromechanical devices and systems ; neutral axis ; Physics ; Piezoresistance ; Piezoresistive devices ; Piezoresistors ; polymeric cantilevers ; Polymers ; Stiffness ; Stress ; Stresses ; Surface resistance ; surface stress</subject><ispartof>Journal of microelectromechanical systems, 2006-12, Vol.15 (6), p.1789-1794</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</citedby><cites>FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4020272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18364282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kale, N.S.</creatorcontrib><creatorcontrib>Rao, V.R.</creatorcontrib><title>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications</description><subject>Affinity cantilevers</subject><subject>antibody immobilization</subject><subject>bioMEMS</subject><subject>Capacitive sensors</subject><subject>Chemical vapor deposition</subject><subject>Deflection</subject><subject>Design engineering</subject><subject>Detection</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Guidelines</subject><subject>hotwire CVD</subject><subject>Immune system</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Markers</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices and systems</subject><subject>neutral axis</subject><subject>Physics</subject><subject>Piezoresistance</subject><subject>Piezoresistive devices</subject><subject>Piezoresistors</subject><subject>polymeric cantilevers</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Stress</subject><subject>Stresses</subject><subject>Surface resistance</subject><subject>surface stress</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEUhUVJoYmbHxC6EYGSbsbVlTR6LI3jpCl5LNKshUYjFYWJxpXGgfz7yrVJoIssLrpI3zn3ioPQCZA5ANHff96sbu7nlBAxV0oQBh_QIWgODYFWHdSetLKR0MpP6KiUR0KAcyUO0e25L_F3wjb1-MJ2OTo7xTHhq1I2vuCY8CKEmOL0gpc2TXHwzz4XHMaMuzhuh-LFej3sZeUz-hjsUPzx_pyhh4vVr-WP5vru8mq5uG4cU3JqgGtHtdCB9RY4a4H1oQ-W9J0VnQYnWRChc95DvQkgOtcyqTTvO0ZJFbEZOtv5rvP4py46madYnB8Gm_y4KUZVGJjktJLf3iVBSKBcayUqevof-jhucqr_MBooBcZrzRDsIJfHUrIPZp3jk80vBojZRmH-RWG2UZhdFFXzdW9si7NDyDa5WN6EiglO1XbXLzsueu9fnzmhhErK_gJyfpFN</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Kale, N.S.</creator><creator>Rao, V.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20061201</creationdate><title>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</title><author>Kale, N.S. ; Rao, V.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Affinity cantilevers</topic><topic>antibody immobilization</topic><topic>bioMEMS</topic><topic>Capacitive sensors</topic><topic>Chemical vapor deposition</topic><topic>Deflection</topic><topic>Design engineering</topic><topic>Detection</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Guidelines</topic><topic>hotwire CVD</topic><topic>Immune system</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Markers</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices and systems</topic><topic>neutral axis</topic><topic>Physics</topic><topic>Piezoresistance</topic><topic>Piezoresistive devices</topic><topic>Piezoresistors</topic><topic>polymeric cantilevers</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Stress</topic><topic>Stresses</topic><topic>Surface resistance</topic><topic>surface stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kale, N.S.</creatorcontrib><creatorcontrib>Rao, V.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kale, N.S.</au><au>Rao, V.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>15</volume><issue>6</issue><spage>1789</spage><epage>1794</epage><pages>1789-1794</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2006.886031</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2006-12, Vol.15 (6), p.1789-1794 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_pascalfrancis_primary_18364282 |
source | IEEE Xplore (Online service) |
subjects | Affinity cantilevers antibody immobilization bioMEMS Capacitive sensors Chemical vapor deposition Deflection Design engineering Detection Exact sciences and technology Fabrication Guidelines hotwire CVD Immune system Instruments, apparatus, components and techniques common to several branches of physics and astronomy Markers Mechanical instruments, equipment and techniques Micromechanical devices and systems neutral axis Physics Piezoresistance Piezoresistive devices Piezoresistors polymeric cantilevers Polymers Stiffness Stress Stresses Surface resistance surface stress |
title | Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20Issues%20in%20Affinity%20Cantilevers%20for%20bioMEMS%20Applications&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Kale,%20N.S.&rft.date=2006-12-01&rft.volume=15&rft.issue=6&rft.spage=1789&rft.epage=1794&rft.pages=1789-1794&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2006.886031&rft_dat=%3Cproquest_pasca%3E889413742%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912213421&rft_id=info:pmid/&rft_ieee_id=4020272&rfr_iscdi=true |