Loading…

Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications

Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2006-12, Vol.15 (6), p.1789-1794
Main Authors: Kale, N.S., Rao, V.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3
cites cdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3
container_end_page 1794
container_issue 6
container_start_page 1789
container_title Journal of microelectromechanical systems
container_volume 15
creator Kale, N.S.
Rao, V.R.
description Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications
doi_str_mv 10.1109/JMEMS.2006.886031
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18364282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4020272</ieee_id><sourcerecordid>889413742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVJoYmbHxC6EYGSbsbVlTR6LI3jpCl5LNKshUYjFYWJxpXGgfz7yrVJoIssLrpI3zn3ioPQCZA5ANHff96sbu7nlBAxV0oQBh_QIWgODYFWHdSetLKR0MpP6KiUR0KAcyUO0e25L_F3wjb1-MJ2OTo7xTHhq1I2vuCY8CKEmOL0gpc2TXHwzz4XHMaMuzhuh-LFej3sZeUz-hjsUPzx_pyhh4vVr-WP5vru8mq5uG4cU3JqgGtHtdCB9RY4a4H1oQ-W9J0VnQYnWRChc95DvQkgOtcyqTTvO0ZJFbEZOtv5rvP4py46madYnB8Gm_y4KUZVGJjktJLf3iVBSKBcayUqevof-jhucqr_MBooBcZrzRDsIJfHUrIPZp3jk80vBojZRmH-RWG2UZhdFFXzdW9si7NDyDa5WN6EiglO1XbXLzsueu9fnzmhhErK_gJyfpFN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912213421</pqid></control><display><type>article</type><title>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</title><source>IEEE Xplore (Online service)</source><creator>Kale, N.S. ; Rao, V.R.</creator><creatorcontrib>Kale, N.S. ; Rao, V.R.</creatorcontrib><description>Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2006.886031</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Affinity cantilevers ; antibody immobilization ; bioMEMS ; Capacitive sensors ; Chemical vapor deposition ; Deflection ; Design engineering ; Detection ; Exact sciences and technology ; Fabrication ; Guidelines ; hotwire CVD ; Immune system ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Markers ; Mechanical instruments, equipment and techniques ; Micromechanical devices and systems ; neutral axis ; Physics ; Piezoresistance ; Piezoresistive devices ; Piezoresistors ; polymeric cantilevers ; Polymers ; Stiffness ; Stress ; Stresses ; Surface resistance ; surface stress</subject><ispartof>Journal of microelectromechanical systems, 2006-12, Vol.15 (6), p.1789-1794</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</citedby><cites>FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4020272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18364282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kale, N.S.</creatorcontrib><creatorcontrib>Rao, V.R.</creatorcontrib><title>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications</description><subject>Affinity cantilevers</subject><subject>antibody immobilization</subject><subject>bioMEMS</subject><subject>Capacitive sensors</subject><subject>Chemical vapor deposition</subject><subject>Deflection</subject><subject>Design engineering</subject><subject>Detection</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Guidelines</subject><subject>hotwire CVD</subject><subject>Immune system</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Markers</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices and systems</subject><subject>neutral axis</subject><subject>Physics</subject><subject>Piezoresistance</subject><subject>Piezoresistive devices</subject><subject>Piezoresistors</subject><subject>polymeric cantilevers</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Stress</subject><subject>Stresses</subject><subject>Surface resistance</subject><subject>surface stress</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEUhUVJoYmbHxC6EYGSbsbVlTR6LI3jpCl5LNKshUYjFYWJxpXGgfz7yrVJoIssLrpI3zn3ioPQCZA5ANHff96sbu7nlBAxV0oQBh_QIWgODYFWHdSetLKR0MpP6KiUR0KAcyUO0e25L_F3wjb1-MJ2OTo7xTHhq1I2vuCY8CKEmOL0gpc2TXHwzz4XHMaMuzhuh-LFej3sZeUz-hjsUPzx_pyhh4vVr-WP5vru8mq5uG4cU3JqgGtHtdCB9RY4a4H1oQ-W9J0VnQYnWRChc95DvQkgOtcyqTTvO0ZJFbEZOtv5rvP4py46madYnB8Gm_y4KUZVGJjktJLf3iVBSKBcayUqevof-jhucqr_MBooBcZrzRDsIJfHUrIPZp3jk80vBojZRmH-RWG2UZhdFFXzdW9si7NDyDa5WN6EiglO1XbXLzsueu9fnzmhhErK_gJyfpFN</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Kale, N.S.</creator><creator>Rao, V.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20061201</creationdate><title>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</title><author>Kale, N.S. ; Rao, V.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Affinity cantilevers</topic><topic>antibody immobilization</topic><topic>bioMEMS</topic><topic>Capacitive sensors</topic><topic>Chemical vapor deposition</topic><topic>Deflection</topic><topic>Design engineering</topic><topic>Detection</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Guidelines</topic><topic>hotwire CVD</topic><topic>Immune system</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Markers</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices and systems</topic><topic>neutral axis</topic><topic>Physics</topic><topic>Piezoresistance</topic><topic>Piezoresistive devices</topic><topic>Piezoresistors</topic><topic>polymeric cantilevers</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Stress</topic><topic>Stresses</topic><topic>Surface resistance</topic><topic>surface stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kale, N.S.</creatorcontrib><creatorcontrib>Rao, V.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kale, N.S.</au><au>Rao, V.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>15</volume><issue>6</issue><spage>1789</spage><epage>1794</epage><pages>1789-1794</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Microfabricated cantilevers are widely used for biomedical sensing applications. In this paper, for the first time, design guidelines have been provided for composite polymeric microcantilevers with embedded piezoresistors. Optimization guidelines have been provided from the point of reducing their stiffness and to increase their deflection and the DeltaR/R response. Choice of the piezoresistive material and the location of this layer with respect to the neutral axis are shown to impact the stiffness and DeltaR/R of a microcantilever. Differences in the behavior of DeltaR/R and deflection, when surface stresses are applied to polymer based microcantilevers and oxide/nitride based ones, are brought out. We also show that it is essential to have the immobilization layer and the piezoresistor on the same side of the neutral axis particularly when these microcantivelers are used for sensing small surface stresses in the order of a few mN/m, typical of many molecular markers used in biomedical applications</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2006.886031</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2006-12, Vol.15 (6), p.1789-1794
issn 1057-7157
1941-0158
language eng
recordid cdi_pascalfrancis_primary_18364282
source IEEE Xplore (Online service)
subjects Affinity cantilevers
antibody immobilization
bioMEMS
Capacitive sensors
Chemical vapor deposition
Deflection
Design engineering
Detection
Exact sciences and technology
Fabrication
Guidelines
hotwire CVD
Immune system
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Markers
Mechanical instruments, equipment and techniques
Micromechanical devices and systems
neutral axis
Physics
Piezoresistance
Piezoresistive devices
Piezoresistors
polymeric cantilevers
Polymers
Stiffness
Stress
Stresses
Surface resistance
surface stress
title Design and Fabrication Issues in Affinity Cantilevers for bioMEMS Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20Issues%20in%20Affinity%20Cantilevers%20for%20bioMEMS%20Applications&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Kale,%20N.S.&rft.date=2006-12-01&rft.volume=15&rft.issue=6&rft.spage=1789&rft.epage=1794&rft.pages=1789-1794&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2006.886031&rft_dat=%3Cproquest_pasca%3E889413742%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-149c2969f3da143513dfdfa0dba6b91c73f6fbcee1dbaf16bc537894db320f3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912213421&rft_id=info:pmid/&rft_ieee_id=4020272&rfr_iscdi=true